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Preface

This book is designed for final-year university students taking a first course in
insurance risk theory. Like many textbooks, it has its origins in lectures deliv-
ered in university courses, in this case at Heriot-Watt University, Edinburgh,
and at the University of Melbourne. My intention in writing this book is to pro-
vide an introduction to the classical topics in risk theory, especially aggregate
claims distributions and ruin theory.

The prerequisite knowledge for this book is probability theory at a level such
as that in Grimmett and Welsh (1986). In particular, readers should be familiar
with the basic concepts of distribution theory and be comfortable in the use of
tools such as generating functions. Much of Chapter 1 reviews distributions
and concepts with which the reader should be familiar. A basic knowledge of
stochastic processes is helpful, but not essential, forChapters 6 to 8. Throughout
the text, care has been taken to use straightforward mathematical techniques to
derive results.

Since the early 1980s, there has been much research in risk theory in com-
putational methods, and recursive schemes in particular. Throughout the text,
recursive methods are described and applied, but a full understanding of such
methods can only be obtained by applying them. The reader should therefore
by prepared to write some (short) computer programs to tackle some of the
examples and exercises.

Many of these examples and exercises are drawn from materials I have used
in teaching and examining, so the degree of difficulty is not uniform. At the
end of the book, some outline solutions are provided, which should allow the
reader to complete the exercises, but in many cases a fair amount of work (and
thought!) is required of the reader. Teachers can obtain full model solutions by
emailing solutions@cambridge.org.

Some references are given at the end of each chapter for the main results in
that chapter, but it was not my intention to provide comprehensive references,
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xii Preface

and readers are therefore encouraged to review the papers and books I have
cited and to investigate the references therein.

Work on this book started during study leave at theUniversity ofCopenhagen
in 1997 and, after much inactivity, was completed this year on study leave at
the University of Waterloo and at Heriot-Watt University. I would like to thank
all those at these three universities who showed great hospitality and provided a
stimulating working environment. I would also like to thank former students at
Melbourne: Jeffrey Chee and Kee Leong Lum for providing feedback on initial
drafts, and Kwok Swan Wong who devised the examples in Section 8.6.3.
Finally, I would like to single out two people in Edinburgh for thanks. First,
this book would not have been possible without the support and encouragement
of Emeritus Professor James Gray over a number of years as teacher, supervisor
and colleague. Second, many of the ideas in this book come from joint work
with HowardWaters, both in teaching and research, and I ammost appreciative
of his support and advice.

David C.M. Dickson
Melbourne, August 2004



1

Probability distributions and
insurance applications

1.1 Introduction

This book is about risk theory, with particular emphasis on the two major topics
in the field, namely risk models and ruin theory. Risk theory provides a mathe-
matical basis for the study of general insurance risks, and so it is appropriate to
start with a brief description of the nature of general insurance risks. The term
general insurance essentially applies to an insurance risk that is not a life insur-
ance or health insurance risk, and so the term covers familiar forms of personal
insurance such as motor vehicle insurance, home and contents insurance, and
travel insurance.

Let us focus on how a motor vehicle insurance policy typically operates from
an insurer’s point of view. Under such a policy, the insured party pays an amount
of money (the premium) to the insurer at the start of the period of insurance
cover, which we assume to be one year. The insured party will make a claim
under the insurance policy each time the insured party has an accident during the
year that results in damage to the motor vehicle, and hence requires repair costs.
There are two sources of uncertainty for the insurer: how many claims will the
insured party make, and, if claims are made, what will be the amounts of those
claims? Thus, if the insurer were to build a probabilistic model to represent
its claims outgo under the policy, the model would require a component that
modelled the number of claims and another that modelled the amounts of those
claims. This is a general framework that applies to modelling claims outgo
under any general insurance policy, not just motor vehicle insurance, and we
will describe it in greater detail in later chapters.

In this chapter we start with a review of distributions, most of which are
commonly used to model either the number of claims arising from an insurance
risk or the amounts of individual claims. We then describe mixed distributions
before introducing two simple forms of reinsurance arrangement and describing
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2 Probability distributions and insurance applications

these in mathematical terms. We close the chapter by considering a problem
that is important in the context of risk models, namely finding the distribution
of a sum of independent and identically distributed random variables.

1.2 Important discrete distributions

1.2.1 The Poisson distribution

When a random variable N has a Poisson distribution with parameter λ > 0,
its probability function is given by

Pr(N = x) = e−λ λx

x!

for x = 0, 1, 2, . . . The moment generating function is

MN (t) =
∞∑

x=0

etx e−λ λx

x!
= e−λ

∞∑
x=0

(λet )x

x!
= exp{λ(et − 1)} (1.1)

and the probability generating function is

PN (r ) =
∞∑

x=0

r x e−λ λx

x!
= exp {λ(r − 1)} .

The moments of N can be found from the moment generating function. For
example,

M ′
N (t) = λet MN (t)

and

M ′′
N (t) = λet MN (t) + (λet )2 MN (t)

from which it follows that E [N ] = λ and E
[
N 2

] = λ + λ2 so that V [N ] = λ.
We use the notation P(λ) to denote a Poisson distribution with parameter λ.

1.2.2 The binomial distribution

When a random variable N has a binomial distribution with parameters n and q,
where n is a positive integer and 0 < q < 1, its probability function is given by

Pr(N = x) =
(

n

x

)
qx (1 − q)n−x



1.2 Important discrete distributions 3

for x = 0, 1, 2, . . . , n. The moment generating function is

MN (t) =
n∑

x=0

etx

(
n

x

)
qx (1 − q)n−x

=
n∑

x=0

(
n

x

)
(qet )x (1 − q)n−x

= (
qet + 1 − q

)n

and the probability generating function is

PN (r ) = (qr + 1 − q)n .

As

M ′
N (t) = n

(
qet + 1 − q

)n−1
qet

and

M ′′
N (t) = n(n − 1)

(
qet + 1 − q

)n−2 (
qet

)2 + n
(
qet + 1 − q

)n−1
qet

it follows that E [N ] = nq, E
[
N 2

] = n(n − 1)q2 + nq and V [N ] =
nq(1 − q).

We use the notation B(n, q) to denote a binomial distribution with parameters
n and q.

1.2.3 The negative binomial distribution

When a random variable N has a negative binomial distribution with parameters
k > 0 and p, where 0 < p < 1, its probability function is given by

Pr(N = x) =
(

k + x − 1

x

)
pkqx

for x = 0, 1, 2, . . . , where q = 1 − p. When k is an integer, calculation of
the probability function is straightforward as the probability function can be
expressed in terms of factorials. An alternative method of calculating the prob-
ability function, regardless of whether k is an integer, is recursively as

Pr(N = x + 1) = k + x

x + 1
q Pr(N = x)

for x = 0, 1, 2, . . . , with starting value Pr(N = 0) = pk .
The moment generating function can be found by making use of the identity

∞∑
x=0

Pr(N = x) = 1. (1.2)
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From this it follows that
∞∑

x=0

(
k + x − 1

x

)
(1 − qet )k(qet )x = 1

provided that 0 < qet < 1. Hence

MN (t) =
∞∑

x=0

etx

(
k + x − 1

x

)
pkqx

= pk

(1 − qet )k

∞∑
x=0

(
k + x − 1

x

)
(1 − qet )k(qet )x

=
(

p

1 − qet

)k

provided that 0 < qet < 1, or, equivalently, t < − log q. Similarly, the proba-
bility generating function is

PN (r ) =
(

p

1 − qr

)k

.

Moments of this distribution can be found by differentiating the moment
generating function, and the mean and variance are given by E [N ] = kq/p
and V [N ] = kq/p2.

Equality (1.2) trivially gives

∞∑
x=1

(
k + x − 1

x

)
pkqx = 1 − pk, (1.3)

a result we shall use in Section 4.5.1.
We use the notation N B(k, p) to denote a negative binomial distribution

with parameters k and p.

1.2.4 The geometric distribution

The geometric distribution is a special case of the negative binomial distribu-
tion. When the negative binomial parameter k is 1, the distribution is called a
geometric distribution with parameter p and the probability function is

Pr(N = x) = pqx

for x = 0, 1, 2, . . . From above, it follows that E[N ] = q/p, V [N ] = q/p2

and

MN (t) = p

1 − qet

for t < − log q.
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This distribution plays an important role in ruin theory, as will be seen in
Chapter 7.

1.3 Important continuous distributions

1.3.1 The gamma distribution

When a random variable X has a gamma distribution with parameters α > 0
and λ > 0, its density function is given by

f (x) = λαxα−1e−λx

�(α)

for x > 0, where �(α) is the gamma function, defined as

�(α) =
∫ ∞

0
xα−1e−x dx .

In the special case when α is an integer the distribution is also known as an
Erlang distribution, and repeated integration by parts gives the distribution
function as

F(x) = 1 −
α−1∑
j=0

e−λx (λx) j

j!

for x ≥ 0. The moments and moment generating function of the gamma distri-
bution can be found by noting that∫ ∞

0
f (x) dx = 1

yields ∫ ∞

0
xα−1e−λx dx = �(α)

λα
. (1.4)

The nth moment is

E
[
Xn

] =
∫ ∞

0
xn λαxα−1e−λx

�(α)
dx = λα

�(α)

∫ ∞

0
xn+α−1e−λx dx,

and from identity (1.4) it follows that

E
[
Xn

] = λα

�(α)

�(α + n)

λα+n = �(α + n)

�(α)λn . (1.5)

In particular, E [X ] = α/λ and E
[
X2

] = α(α + 1)/λ2, so that V [X ] = α/λ2.
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We can find the moment generating function in a similar fashion. As

MX (t) =
∫ ∞

0
etx λαxα−1e−λx

�(α)
dx = λα

�(α)

∫ ∞

0
xα−1e−(λ−t)x dx , (1.6)

application of identity (1.4) gives

MX (t) = λα

�(α)

�(α)

(λ − t)α
=

(
λ

λ − t

)α

. (1.7)

Note that in identity (1.4), λ > 0. Hence, in order to apply (1.4) to (1.6) we
require that λ − t > 0, so that the moment generating function exists when
t < λ.

A result that will be used in Section 4.8.2 is that the coefficient of skewness
of X , which we denote by Sk[X ], is 2/

√
α. This follows from the definition of

the coefficient of skewness, namely third central moment divided by standard
deviation cubed, and the fact that the third central moment is

E

[(
X − α

λ

)3
]

= E
[
X3

] − 3
α

λ
E[X2] + 2

(α

λ

)3

= α(α + 1)(α + 2) − 3α2(α + 1) + 2α3

λ3

= 2α

λ3 .

We use the notation γ (α, λ) to denote a gamma distribution with parameters
α and λ.

1.3.2 The exponential distribution

The exponential distribution is a special case of the gamma distribution. It is just
a gamma distribution with parameter α = 1. Hence, the exponential distribution
with parameter λ > 0 has density function

f (x) = λe−λx

for x > 0, and has distribution function

F(x) = 1 − e−λx

for x ≥ 0. From equation (1.5), the nth moment of the distribution is

E
[
Xn

] = n!

λn
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and from equation (1.7) the moment generating function is

MX (t) = λ

λ − t

for t < λ.

1.3.3 The Pareto distribution

When a random variable X has a Pareto distribution with parameters α > 0 and
λ > 0, its density function is given by

f (x) = αλα

(λ + x)α+1

for x > 0. Integrating this density we find that the distribution function is

F(x) = 1 −
(

λ

λ + x

)α

for x ≥ 0. Whenever moments of the distribution exist, they can be found from

E[Xn] =
∫ ∞

0
xn f (x) dx

by integration by parts. However, they can also be found individually using
the following approach. Since the integral of the density function over (0, ∞)
equals 1, we have ∫ ∞

0

dx

(λ + x)α+1
= 1

αλα
,

an identity which holds provided that α > 0. To find E [X ], we can write

E [X ] =
∫ ∞

0
x f (x) dx =

∫ ∞

0
(x + λ − λ) f (x) dx =

∫ ∞

0
(x + λ) f (x) dx − λ,

and inserting for f we have

E [X ] =
∫ ∞

0

αλα

(λ + x)α
dx − λ.

We can evaluate the integral expression by rewriting the integrand in terms of
a Pareto density function with parameters α − 1 and λ. Thus

E [X ] = αλ

α − 1

∫ ∞

0

(α − 1)λα−1

(λ + x)α
dx − λ (1.8)

and since the integral equals 1,

E [X ] = αλ

α − 1
− λ = λ

α − 1
.
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It is important to note that the integrand in equation (1.8) is a Pareto density
function only if α > 1, and hence E [X ] exists only for α > 1. Similarly, we
can find E

[
X2

]
from

E
[
X2

] =
∫ ∞

0

(
(x + λ)2 − 2λx − λ2

)
f (x) dx

=
∫ ∞

0
(x + λ)2 f (x) dx − 2λE[X ] − λ2.

Proceeding as in the case of E [X ] we can show that

E
[
X 2

] = 2λ2

(α − 1)(α − 2)

provided that α > 2, and hence that

V [X ] = αλ2

(α − 1)2(α − 2)
.

An alternative method of finding moments of the Pareto distribution is given in
Exercise 4 at the end of this chapter.

We use the notation Pa(α, λ) to denote a Pareto distribution with parameters
α and λ.

1.3.4 The normal distribution

When a random variable X has a normal distribution with parameters µ and
σ 2, its density function is given by

f (x) = 1

σ
√

2π
exp

{
− (x − µ)2

2σ 2

}

for −∞ < x < ∞. We use the notation N (µ, σ 2) to denote a normal distribu-
tion with parameters µ and σ 2.

The standard normal distribution has parameters 0 and 1 and its distribution
function is denoted � where

�(x) =
∫ x

−∞

1√
2π

exp
{−x2/2

}
dx .

A key relationship is that if X ∼ N (µ, σ 2) and if Z = (X − µ)/σ , then
Z ∼ N (0, 1).

The moment generating function is

MX (t) = exp
{
µt + 1

2σ 2t2
}

(1.9)

from which it can be shown (see Exercise 6) that E[X ] = µ and V [X ] = σ 2.
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1.3.5 The lognormal distribution

When a random variable X has a lognormal distribution with parameters µ and
σ , where −∞ < µ < ∞ and σ > 0, its density function is given by

f (x) = 1

xσ
√

2π
exp

{
− (log x − µ)2

2σ 2

}

for x > 0. The distribution function can be obtained by integrating the density
function as follows:

F(x) =
∫ x

0

1

yσ
√

2π
exp

{
− (log y − µ)2

2σ 2

}
dy,

and the substitution z = log y yields

F(x) =
∫ log x

−∞

1

σ
√

2π
exp

{
− (z − µ)2

2σ 2

}
dz.

As the integrand is the N (µ, σ 2) density function,

F(x) = �

(
log x − µ

σ

)
.

Thus, probabilities under a lognormal distribution can be calculated from the
standard normal distribution function.

We use the notation L N (µ, σ ) to denote a lognormal distribution with param-
eters µ and σ . From the preceding argument it follows that if X ∼ L N (µ, σ ),
then log X ∼ N (µ, σ 2).

This relationship between normal and lognormal distributions is extremely
useful, particularly in deriving moments. If X ∼ L N (µ, σ ) and Y = log X ,
then

E
[
X n

] = E
[
enY

] = MY (n) = exp
{
µn + 1

2σ 2n2
}

where the final equality follows by equation (1.9).

1.4 Mixed distributions

Many of the distributions encountered in this book are mixed distributions. To
illustrate the idea of a mixed distribution, let X be exponentially distributed
with mean 100, and let the random variable Y be defined by

Y =



0 if X < 20
X − 20 if 20 ≤ X < 300.
280 if X ≥ 300
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Figure 1.1 The distribution function H .

Then

Pr(Y = 0) = Pr(X < 20) = 1 − e−0.2 = 0.1813,

and similarly Pr(Y = 280) = 0.0498. Thus, Y has masses of probability at the
points 0 and 280. However, in the interval (0, 280), the distribution of Y is
continuous, with, for example,

Pr(30 < Y ≤ 100) = Pr(50 < X ≤ 120) = 0.3053.

Figure 1.1 shows the distribution function, H , of Y . Note that there are
jumps at 0 and 280, corresponding to the masses of probability at these points.
As the distribution function is differentiable in the interval (0, 280), Y has a
density function in this interval. Letting h denote the density function of Y , the
moments of Y can be found from

E
[
Yr

] =
∫ 280

0
xr h(x) dx + 280r Pr(Y = 280).

At certain points in this book, it will be convenient to use Stieltjes integral
notation, so that we do not have to specify whether a distribution is discrete,
continuous or mixed. In this notation, we write the r th moment of Y as

E
[
Y r

] =
∫ ∞

0
xr d H (x).

More generally, if K (x) = Pr(Z ≤ x) is a mixed distribution on [0,∞), and m
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is a function, then

E [m(Z )] =
∫ ∞

0
m(x) d K (x)

where we interpret the integral as∑
xi

m (xi ) Pr(Z = xi ) +
∫

m(x)k(x) dx

where summation is over the points {xi } at which there is a mass of probability,
and integration is over the intervals in which K is continuous with density
function k.

1.5 Insurance applications

In this section we discuss some functions of random variables. In particular, we
focus on functions that are natural in the context of reinsurance. Throughout
this section we let X denote the amount of a claim, and let X have distribution
function F . Further, we assume that all claim amounts are non-negative quan-
tities, so that F(x) = 0 for x < 0, and, with the exception of Example 1.7, we
assume that X is a continuous random variable, with density function f .

A reinsurance arrangement is an agreement between an insurer and a rein-
surer under which claims that occur in a fixed period of time (e.g. one year)
are split between the insurer and the reinsurer in an agreed manner. Thus, the
insurer is effectively insuring part of a risk with a reinsurer and, of course, pays
a premium to the reinsurer for this cover. One effect of reinsurance is that it
reduces the variability of claim payments by the insurer.

1.5.1 Proportional reinsurance

Under a proportional reinsurance arrangement, the insurer pays a fixed pro-
portion, say a, of each claim that occurs during the period of the reinsurance
arrangement. The remaining proportion, 1 − a, of each claim is paid by the
reinsurer.

Let Y denote the part of a claim paid by the insurer under this proportional
reinsurance arrangement and let Z denote the part paid by the reinsurer. In terms
of random variables, Y = aX and Z = (1 − a)X , and trivially Y + Z = X .
Thus, the random variables Y and Z are both scale transformations of the
random variable X . The distribution function of Y is given by

Pr(Y ≤ x) = Pr(aX ≤ x) = Pr(X ≤ x/a) = F(x/a)
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and the density function is

1

a
f (x/a).

Example 1.1 Let X ∼ γ (α, λ). What is the distribution of aX?

Solution 1.1 As

f (x) = λαxα−1e−λx

�(α)
,

it follows that the density function of a X is

λαxα−1e−λx/a

aα�(α)
.

Thus, the distribution of aX is γ (α, λ/a).

Example 1.2 Let X ∼ L N (µ, σ ). What is the distribution of aX?

Solution 1.2 As

f (x) = 1

xσ
√

2π
exp

{
− (log x − µ)2

2σ 2

}
,

it follows that the density function of aX is

1

xσ
√

2π
exp

{
− (log x − log a − µ)2

2σ 2

}
.

Thus, the distribution of a X is L N (µ + log a, σ ).

1.5.2 Excess of loss reinsurance

Under an excess of loss reinsurance arrangement, a claim is shared between
the insurer and the reinsurer only if the claim exceeds a fixed amount called
the retention level. Otherwise, the insurer pays the claim in full. Let M
denote the retention level, and let Y and Z denote the amounts paid by the insurer
and the reinsurer respectively under this reinsurance arrangement. Mathemati-
cally, this arrangement can be represented as the insurer pays Y = min(X, M)
and the reinsurer pays Z = max(0, X − M), with Y + Z = X .

The insurer’s position
Let FY be the distribution function of Y . Then it follows from the definition of
Y that

FY (x) =
{

F(x) for x < M
1 for x ≥ M

.
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Thus, the distribution of Y is mixed, with a density function f (x) for 0 < x <

M , and a mass of probability at M , with Pr(Y = M) = 1 − F(M).
As Y is a function of X , the moments of Y can be calculated from

E
[
Y n

] =
∫ ∞

0
(min(x, M))n f (x) dx ,

and this integral can be split into two parts since min(x, M) equals x for 0 ≤
x < M and equals M for x ≥ M . Hence

E
[
Y n

] =
∫ M

0
xn f (x) dx +

∫ ∞

M
Mn f (x) dx

=
∫ M

0
xn f (x) dx + Mn (1 − F(M)) . (1.10)

In particular,

E[Y ] =
∫ M

0
x f (x) dx + M (1 − F(M))

so that

d

d M
E[Y ] = 1 − F(M) > 0.

Thus, as a function of M , E [Y ] increases from 0 when M = 0 to E [X ] as
M → ∞.

Example 1.3 Let F(x) = 1 − e−λx , x ≥ 0. Find E[Y ].

Solution 1.3 We have

E [Y ] =
∫ M

0
xλe−λx dx + Me−λM ,

and integration by parts yields

E [Y ] = 1

λ

(
1 − e−λM

)
.

Example 1.4 Let X ∼ L N (µ, σ ). Find E[Y n].

Solution 1.4 Inserting the lognormal density function into the integral in equa-
tion (1.10) we get

E
[
Y n

] =
∫ M

0
xn 1

xσ
√

2π
exp

{
− (log x − µ)2

2σ 2

}
dx + Mn (1 − F(M)) .

(1.11)
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To evaluate this, we consider separately each term on the right-hand side of
equation (1.11). Let

I =
∫ M

0
xn 1

xσ
√

2π
exp

{
− (log x − µ)2

2σ 2

}
dx .

To deal with an integral of this type, there is a standard substitution, namely
y = log x. This gives

I =
∫ log M

−∞
exp{yn} 1

σ
√

2π
exp

{
− (y − µ)2

2σ 2

}
dy.

The technique in evaluating this integral is to write the integrand in terms
of a normal density function (different to the N (µ, σ 2) density function). To
achieve this we apply the technique of ‘completing the square’ in the exponent,
as follows:

yn − (y − µ)2

2σ 2
= −1

2σ 2

[
(y − µ)2 − 2σ 2 yn

]
= −1

2σ 2

[
y2 − 2µy + µ2 − 2σ 2 yn

]
= −1

2σ 2

[
y2 − 2y(µ + σ 2n) + µ2

]
.

Noting that the terms inside the square brackets would give the square of y −
(µ + σ 2n) if the final term were (µ + σ 2n)2 instead of µ2, we can write the
exponent as

−1

2σ 2

[
(y − (µ + σ 2n))2 − (µ + σ 2n)2 + µ2]

= −1

2σ 2

[
(y − (µ + σ 2n))2 − 2µσ 2n − σ 4n2

]
= µn + 1

2σ 2n2 − 1

2σ 2
(y − (µ + σ 2n))2.

Hence

I = exp{µn + 1
2σ 2n2}

∫ log M

−∞

1

σ
√

2π
exp

{
− 1

2σ 2
(y − (µ + σ 2n))2

}
dy,

and as the integrand is the N (µ + σ 2n, σ 2) density function,

I = exp{µn + 1
2σ 2n2}�

(
log M − µ − σ 2n

σ

)
.
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Finally, using the relationship between normal and lognormal distributions,

1 − F(M) = 1 − �

(
log M − µ

σ

)

so that

E
[
Y n

] = exp{µn + 1
2σ 2n2}�

(
log M − µ − σ 2n

σ

)

+ Mn

(
1 − �

(
log M − µ

σ

))
.

The reinsurer’s position
From the definition of Z it follows that Z takes the value zero if X ≤ M , and
takes the value X − M if X > M . Hence, if FZ denotes the distribution function
of Z , then FZ (0) = F(M) and, for x > 0, FZ (x) = F(x + M). Thus, FZ is a
mixed distribution with a mass of probability at 0.

The moments of Z can be found in a similar fashion to those of Y . We have

E
[
Zn

] =
∫ ∞

0
(max(0, x − M))n f (x) dx

and since max(0, x − M) is 0 for 0 ≤ x ≤ M , we have

E
[
Zn

] =
∫ ∞

M
(x − M)n f (x) dx . (1.12)

Example 1.5 Let F(x) = 1 − e−λx , x ≥ 0. Find E[Z ].

Solution 1.5 Setting n = 1 in equation (1.12) we have

E [Z ] =
∫ ∞

M
(x − M)λe−λx dx

=
∫ ∞

0
yλe−λ(y+M) dy

= e−λM E [X ]

= 1

λ
e−λM .

Alternatively, the identity E [Z ] = E [X ] − E [Y ] yields the answer with
E[X ] = 1/λ and E[Y ] given by the solution to Example 1.3.

Example 1.6 Let F(x) = 1 − e−λx , x ≥ 0. Find MZ (t).
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Solution 1.6 By definition, MZ (t) = E
[
et Z

]
and as Z = max(0, X − M),

MZ (t) =
∫ ∞

0
et max(0,x−M)λe−λx dx

=
∫ M

0
e0λe−λx dx +

∫ ∞

M
et(x−M)λe−λx dx

= 1 − e−λM + λ

∫ ∞

0
ety−λ(y+M) dy

= 1 − e−λM + λe−λM

λ − t

provided that t < λ.

The above approach is a slightly artificial way of looking at the reinsurer’s
position since it includes zero as a possible ‘claim amount’ for the reinsurer.
An alternative, and more realistic, way of considering the reinsurer’s position
is to consider the distribution of the non-zero amounts paid by the reinsurer. In
practice, the reinsurer is likely to have information only on these amounts, as
the insurer is unlikely to inform the reinsurer each time there is a claim whose
amount is less than M .

Example 1.7 Let X have a discrete distribution as follows:

Pr(X = 100) = 0.6

Pr(X = 175) = 0.3

Pr(X = 200) = 0.1

.

If the insurer effects excess of loss reinsurance with retention level 150, what is
the distribution of the non-zero payments made by the reinsurer?

Solution 1.7 First, we note that the distribution of Z is given by

Pr(Z = 0) = 0.6

Pr(Z = 25) = 0.3

Pr(Z = 50) = 0.1

.

Now let W denote the amount of a non-zero payment made by the reinsurer.
Then W can take one of two values: 25 and 50. Since payments of amount
25 are three times as likely as payments of amount 50 we can write down the
distribution of W as

Pr(W = 25) = 0.75

Pr(W = 50) = 0.25
.
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The argument in Example 1.7 can be formalised, as follows. Let W denote
the amount of a non-zero payment by the reinsurer under an excess of loss rein-
surance arrangement with retention level M . The distribution of W is identical
to that of Z |Z > 0. Hence

Pr(W ≤ x) = Pr(Z ≤ x |Z > 0) = Pr(X ≤ x + M |X > M)

from which it follows that

Pr(W ≤ x) = Pr(M < X ≤ x + M)

Pr(X > M)
= F(x + M) − F(M)

1 − F(M)
. (1.13)

Differentiation gives the density function of W as

f (x + M)

1 − F(M)
. (1.14)

Example 1.8 Let F(x) = 1 − e−λx , x ≥ 0. What is the distribution of the non-
zero claim payments made by the reinsurer?

Solution 1.8 By formula (1.14), the density function is

λe−λ(x+M)

e−λM
= λe−λx ,

so that the distribution of W is the same as that of X. (This rather surpris-
ing result is a consequence of the ‘memoryless’ property of the exponential
distribution.)

Example 1.9 Let X ∼ Pa(α, λ). What is the distribution of the non-zero claim
payments made by the reinsurer?

Solution 1.9 Again applying formula (1.14), the density function is

αλα

(λ + M + x)α+1

(
λ + M

λ

)α

= α(λ + M)α

(λ + M + x)α+1
,

so that the distribution of W is Pa(α, λ + M).

1.5.3 Policy excess

Insurance policies with a policy excess are very common, particularly in motor
vehicle insurance. If a policy is issued with an excess of d, then the insured
party pays any loss of amount less than or equal to d in full, and pays d on
any loss in excess of d. Thus, if X represents the amount of a loss, when a loss
occurs the insured party pays min(X, d) and the insurer pays max(0, X − d).
These quantities are of the same form as the amounts paid by the insurer and
the reinsurer when a claim occurs (for the insurer) under an excess of loss
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reinsurance arrangement. Hence there are no new mathematical considerations
involved. It is important, however, to recognise that X represents the amount
of a loss, and not the amount of a claim.

1.6 Sums of random variables

In many insurance applications we are interested in the distribution of the
sum of independent and identically distributed random variables. For example,
suppose that an insurer issues n policies, and the claim amount from policy i ,
i = 1, 2, . . . , n, is a random variable Xi . Then the total amount the insurer pays
in claims from these n policies is Sn = ∑n

i=1 Xi . An obvious question to ask is
what is the distribution of Sn? This is the question we consider in this section, on
the assumption that {Xi }n

i=1 are independent and identically distributed random
variables. When the distribution of Sn exists in a closed form, we can usually
find it by one of the methods described in the next two sections.

1.6.1 Moment generating function method

This is a very neat way of finding the distribution of Sn . Define MS to be the
moment generating function of Sn and define MX to be the moment generating
function of X1. Then

MS(t) = E
[
et Sn

] = E
[
et(X1+X2+···+Xn )

]
.

Using independence, it follows that

MS(t) = E
[
et X1

]
E

[
et X2

] · · · E
[
et Xn

]
,

and as the Xi s are identically distributed,

MS(t) = MX (t)n .

Hence, if we can identify MX (t)n as the moment generating function of a
distribution, we know the distribution of Sn by the uniqueness property of
moment generating functions.

Example 1.10 Let X1 have a Poisson distribution with parameter λ. What is
the distribution of Sn?

Solution 1.10 As

MX (t) = exp
{
λ(et − 1)

}
,
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we have

MS(t) = exp
{
λn(et − 1)

}
,

and so Sn has a Poisson distribution with parameter λn.

Example 1.11 Let X1 have an exponential distribution with mean 1/λ. What
is the distribution of Sn?

Solution 1.11 As

MX (t) = λ

λ − t

for t < λ, we have

MS(t) =
(

λ

λ − t

)n

,

and so Sn has a γ (n, λ) distribution.

1.6.2 Direct convolution of distributions

Direct convolution is a more direct, and less elegant, method of finding the
distribution of Sn . Let us first assume that {Xi }n

i=1 are discrete random variables,
distributed on the non-negative integers, so that Sn is also distributed on the non-
negative integers.

Let x be a non-negative integer, and consider first the distribution of S2. The
convolution approach to finding Pr(S2 ≤ x) considers how the event {S2 ≤ x}
can occur. This event occurs when X2 takes the value j , where j can be any
value from 0 up to x , and when X1 takes a value less than or equal to x − j , so
that their sum is less than or equal to x . Summing over all possible values of j
and using the fact that X1 and X2 are independent, we have

Pr(S2 ≤ x) =
x∑

j=0

Pr(X1 ≤ x − j) Pr(X2 = j).

The same argument can be applied to find Pr(S3 ≤ x) by writing S3 = S2 + X3,
and by noting that S2 and X3 are independent (as S2 = X1 + X2). Thus

Pr(S3 ≤ x) =
x∑

j=0

Pr(S2 ≤ x − j) Pr(X3 = j),

and, in general,

Pr(Sn ≤ x) =
x∑

j=0

Pr(Sn−1 ≤ x − j) Pr(Xn = j). (1.15)
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The same reasoning gives

Pr(Sn = x) =
x∑

j=0

Pr(Sn−1 = x − j) Pr(Xn = j).

Now let F be the distribution function of X1 and let f j = Pr(X1 = j). We
define

Fn∗(x) = Pr(Sn ≤ x)

and call Fn∗ the n-fold convolution of the distribution F with itself. Then by
equation (1.15),

Fn∗(x) =
x∑

j=0

F (n−1)∗(x − j) f j .

Note that F1∗ = F , and, by convention, we define F0∗(x) = 1 for x ≥ 0 with
F0∗(x) = 0 for x < 0. Similarly, we define f n∗

x = Pr(Sn = x) so that

f n∗
x =

x∑
j=0

f (n−1)∗
x− j f j

with f 1∗ = f .
When F is a continuous distribution on (0,∞) with density function f , the

analogues of the above results are

Fn∗(x) =
∫ x

0
F (n−1)∗(x − y) f (y) dy

and

f n∗(x) =
∫ x

0
f (n−1)∗(x − y) f (y) dy. (1.16)

These results can be used to find the distribution of Sn directly.

Example 1.12 What is the distribution of Sn when {Xi }n
i=1 are independent

exponentially distributed random variables, each with mean 1/λ.

Solution 1.12 Setting n = 2 in equation (1.16) we get

f 2∗(x) =
∫ x

0
f (x − y) f (y) dy

=
∫ x

0
λe−λ(x−y)λe−λydy

= λ2e−λx
∫ x

0
dy

= λ2xe−λx ,
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so that S2 has a γ (2, λ) distribution. Next, setting n = 3 in equation (1.16) we
get

f 3∗(x) =
∫ x

0
f 2∗(x − y) f (y) dy

=
∫ x

0
f 2∗(y) f (x − y) dy

=
∫ x

0
λ2 ye−λyλe−λ(x−y) dy

= 1
2λ3x2e−λx ,

so that the distribution of S3 is γ (3, λ). An inductive argument can now be used
to show that for a general value of n, Sn has a γ (n, λ) distribution.

In general, it is much easier to apply the moment generating function method
to find the distribution of Sn .

1.6.3 Recursive calculation for discrete random variables

In the case when X1 is a discrete random variable, distributed on the non-
negative integers, it is possible to calculate the probability function of Sn recur-
sively. Define

f j = Pr(X1 = j) and g j = Pr(Sn = j),

each for j = 0, 1, 2, . . . We denote the probability generating function of X1

by PX so that

PX (r ) =
∞∑
j=0

r j f j ,

and the probability generating function of Sn by PS so that

PS(r ) =
∞∑

k=0

rk gk .

Using arguments that have previously been applied to moment generating func-
tions, we have

PS(r ) = PX (r )n

and differentiation with respect to r gives

P ′
S(r ) = n PX (r )n−1 P ′

X (r ).
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When we multiply each side of the above identity by r PX (r ), we get

PX (r )r P ′
S(r ) = n PS(r )r P ′

X (r ),

which can be expressed as
∞∑
j=0

r j f j

∞∑
k=1

krk gk = n
∞∑

k=0

rk gk

∞∑
j=1

jr j f j . (1.17)

To find an expression for gx , we consider the coefficient of r x on each side
of equation (1.17), where x is a positive integer. On the left-hand side, the
coefficient of r x can be found as follows. For j = 0, 1, 2, . . . , x − 1, multiply
together the coefficient of r j in the first sum with the coefficient of r x− j in the
second sum. Adding these products together gives the coefficient of r x , namely

f0xgx + f1(x − 1)gx−1 + · · · + fr−1g1 =
x−1∑
j=0

(x − j) f j gx− j .

Similarly, on the right-hand side of equation (1.17) the coefficient of r x is

n (g0x fx + g1(x − 1) fx−1 + · · · + gx−1 f1) = n
x∑

j=1

j f j gx− j .

Since these coefficients must be equal we have

xgx f0 +
x−1∑
j=1

(x − j) f j gx− j = n
x∑

j=1

j f j gx− j

which gives (noting that the sum on the left-hand side is unaltered when the
upper limit of summation is increased to x)

gx = 1

f0

x∑
j=1

(
(n + 1)

j

x
− 1

)
f j gx− j . (1.18)

The important point about this result is that it gives a recursive method of
calculating the probability function {gx}∞x=0. Given the values { f j }∞j=0 we can
use the value of g0 to calculate g1, then the values of g0 and g1 to calculate g2,
and so on. The starting value for the recursive calculation is g0 which is given
by f n

0 since Sn takes the value 0 if and only if each Xi , i = 1, 2, . . . , n, takes
the value 0.

This is a very useful result as it permits much more efficient evaluation of the
probability function of Sn than the direct convolution approach of the previous
section.

We conclude with three remarks about this result:

(i) Computer implementation of formula (1.18) is necessary, especially
when n is large. It is, however, an easy task to program this formula.
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(ii) It is straightforward (see Exercise 11) to adapt this result to the situation
when X1 is distributed on m, m + 1, m + 2, . . . , where m is a positive
integer.

(iii) The recursion formula is unstable. That is, it may give numerical answers
which do not make sense. Thus, caution should be employed when
applying this formula. However, for most practical purposes, numerical
stability is not an issue.

Example 1.13 Let {Xi }4
i=1 be independent and identically distributed random

variables with common probability function f j = Pr(X1 = j) given by

f0 = 0.4 f2 = 0.2
f1 = 0.3 f3 = 0.1

Let S4 = ∑4
i=1 Xi . Recursively calculate Pr(S4 = r ) for r = 1, 2, 3 and 4.

Solution 1.13 The starting value for the recursive calculation is

g0 = Pr(S4 = 0) = f 4
0 = 0.44 = 0.0256.

Now note that as f j = 0 for j = 4, 5, 6, . . . , equation (1.18) can be written
with a different upper limit of summation as

gx = 1

f0

min(3,x)∑
j=1

(
5 j

x
− 1

)
f j gx− j

and so

g1 = 1

f0
4 f1g0 = 0.0768,

g2 = 1

f0

(
3
2 f1g1 + 4 f2g0

) = 0.1376,

g3 = 1

f0

(
2
3 f1g2 + 7

3 f2g1 + 4 f3g0
) = 0.1840,

g4 = 1

f0

(
1
4 f1g3 + 3

2 f2g2 + 11
4 f3g1

) = 0.1905.

1.7 Notes and references

Further details of the distributions discussed in this chapter, including a discus-
sion of how to fit parameters to these distributions, can be found in Hogg and
Klugman (1984). See also Klugman et al. (1998).
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The recursive formula of Section 1.6.3 was derived by De Pril (1985), and a
very elegant proof of the result can be found in his paper.

1.8 Exercises

1. A random variable X has a logarithmic distribution with parameter θ ,
where 0 < θ < 1, if its probability function is

Pr(X = x) = −1

log(1 − θ )

θ x

x

for x = 1, 2, 3, . . . Show that

MX (t) = log(1 − θet )

log(1 − θ )

for t < − log θ . Hence, or otherwise, find the mean and variance of this
distribution.

2. A random variable X has a beta distribution with parameters α > 0 and
β > 0 if its density function is

f (x) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1

for 0 < x < 1. Show that

E
[
Xn

] = �(α + β)�(n + α)

�(α)�(n + α + β)

and hence find the mean and variance of X .
3. A random variable X has a Weibull distribution with parameters c > 0

and γ > 0 if its density function is

f (x) = cγ xγ−1 exp{−cxγ }
for x > 0.
(a) Show that X has distribution function

F(x) = 1 − exp{−cxγ }
for x ≥ 0.

(b) Let Y = Xγ . Show that Y has an exponential distribution with mean
1/c. Hence show that

E
[
Xn

] = �(1 + n/γ )

cn/γ
.
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4. The random variable X has a generalised Pareto distribution with
parameters α > 0, λ > 0 and k > 0 if its density function is

f (x) = �(α + k)λαxk−1

�(α)�(k)(λ + x)k+α

for x > 0. Use the fact that the integral of this density function over
(0, ∞) equals 1 to find the first three moments of a Pa(α, λ) distribution,
where α > 3.

5. The random variable X has a Pa(α, λ) distribution. Let M be a positive
constant. Show that

E[min(X, M)] = λ

α − 1

(
1 −

(
λ

λ + M

)α−1
)

.

6. Use the technique of completing the square from Example 1.4 to show that
when X ∼ N (µ, σ 2), MX (t) = exp

{
µt + 1

2σ 2t2
}
. Verify that E[X ] = µ

and V [X ] = σ 2 by differentiating this moment generating function.
7. Let the random variable X have distribution function F given by

F(x) =



0 for x < 20
(x + 20)/80 for 20 ≤ x < 40.

1 for x ≥ 40

Calculate
(a) Pr(X ≤ 30),
(b) Pr(X = 40),
(c) E[X ], and
(d) V [X ].

8. The random variable X has a lognormal distribution with mean 100 and
variance 30 000. Calculate
(a) E[min(X, 250)],
(b) E[max(0, X − 250)],
(c) V [min(X, 250)], and
(d) E[X |X > 250].

9. Let {Xi }n
i=1 be independent and identically distributed random variables.

Find the distribution of
∑n

i=1 Xi when
(a) X1 ∼ b(m, q), and
(b) X1 ∼ N (µ, σ 2).

10. {Xi }4
i=1 are independent and identically distributed random variables. The

variable X1 has a geometric distribution with

Pr(X1 = x) = 0.75(0.25x )
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for x = 0, 1, 2, . . . Calculate Pr
(∑4

i=1 Xi = 6
)

(a) by finding the distribution of
∑4

i=1 Xi , and
(b) by applying the recursion formula of Section 1.6.3.

11. Let {Xi }n
i=1 be independent and identically distributed random variables,

each distributed on m, m + 1, m + 2, . . . where m is a positive integer.
Let Sn = ∑n

i=1 Xi and define f j = Pr(X1 = j) for
j = m, m + 1, m + 2, . . . and g j = Pr(Sn = j) for
j = mn, mn + 1, mn + 2, . . . Show that

gmn = f n
m

and for r = mn + 1, mn + 2, mn + 3, . . .

gr = 1

fm

r−mn∑
j=1

(
(n + 1) j

r − mn
− 1

)
f j+m gr− j .



2

Utility theory

2.1 Introduction

Utility theory is a subject which has many applications, particularly in eco-
nomics. However, in this chapter we consider utility theory from an insurance
perspective only. We start with a general discussion of utility, then introduce
decision making, which is the key application of utility theory. We also de-
scribe some mathematical functions that might be applied as utility functions,
and discuss their uses and limitations. The intention in this chapter is to provide
a brief overview of key results in utility theory. Further applications of utility
theory are discussed in Chapters 3 and 9.

2.2 Utility functions

A utility function, u(x), can be described as a function which measures the value,
or utility, that an individual (or institution) attaches to the monetary amount x .
Throughout this book we assume that a utility function satisfies the conditions

u′(x) > 0 and u′′(x) < 0. (2.1)

Mathematically, the first of these conditions says that u is an increasing function,
while the second says that u is a concave function. Simply put, the first states that
an individual whose utility function is u prefers amount y to amount z provided
that y > z, that is the individual prefers more money to less! The second states
that as the individual’s wealth increases, the individual places less value on a
fixed increase in wealth. For example, an increase in wealth of 1000 is worth
less to the individual if the individual’s wealth is 2 000 000 compared to the
case when the individual’s wealth is 1 000 000.
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An individual whose utility function satisfies the conditions in (2.1) is said
to be risk averse, and risk aversion can be quantified through the coefficient of
risk aversion defined by

r (x) = −u ′′(x)

u′(x)
. (2.2)

Utility theory can be used to explain why individuals are prepared to buy
insurance, and to pay premiums which, by some criteria at least, are unfair. To
illustrate why this is the case, consider the following situation. Most homeown-
ers insure their homes against events such as fire on an annual basis. Although
the risk of a home being destroyed by a fire in any year may be considered to
be very small, the financial consequences of losing a home and all its contents
in a fire could be devastating for a homeowner. Consequently, a homeowner
may choose to pay a premium to an insurance company for insurance cover
as the homeowner prefers a small certain loss (the premium) to the large loss
that would occur if their home was destroyed, even though the probability of
this event may be small. Indeed, a homeowner’s preferences may be such that
paying a premium that is larger than the expected loss may be preferable to not
effecting insurance.

2.3 The expected utility criterion

Decision making using a utility function is based on the expected utility cri-
terion. This criterion says that a decision maker should calculate the expected
utility of resulting wealth under each course of action, then select the course
of action that gives the greatest value for expected utility of resulting wealth.
If two courses of action yield the same expected utility of resulting wealth,
then the decision maker has no preference between these two courses of ac-
tion.

To illustrate this concept, let us consider an investor with utility function u
who is choosing between two investments which will lead to random net gains
of X1 and X2 respectively. Suppose that the investor has current wealth W , so
that the result of investing in Investment i is W + Xi for i = 1 and 2. Then,
under the expected utility criterion, the investor would choose Investment 1
over Investment 2 if and only if

E [u(W + X1)] > E [u(W + X2)] .

Further, the investor would be indifferent between the two investments if

E [u(W + X1)] = E [u(W + X2)] .
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Example 2.1 Suppose that in the above discussion, u(x) = − exp{−0.002x},
X1 ∼ N (104, 5002) and X2 ∼ N (1.1 × 104, 20002). Which of these invest-
ments does the investor prefer?

Solution 2.1 For Investment 1, the expected utility of resulting wealth is

E [u(W + X1)] = −E
[
exp{−0.002(W + X1)}]

= − exp{−0.002W }E
[
exp{−0.002X1}

]
= − exp{−0.002W } exp

{−0.002 × 104 + 1
2 0.0022 × 5002

}
= − exp{−0.002W } exp {−19.5} ,

where the third line follows from the fact that the expectation in the second line
is MX1 (−0.002). Similarly,

E [u(W + X2)] = − exp{−0.002W } exp {−14} .

Hence, the investor prefers Investment 1 as E [u(W + X1)] is greater than
E [u(W + X2)].

Note that the expected utility criterion may lead to an outcome that is in-
consistent with other criteria. This should not be surprising, as different criteria
will, in general, lead to different decisions. For example, in Example 2.1 above,
the investor did not choose the investment which gave the greater expected net
gain.

We end this section by remarking that if a utility function v is defined in
terms of a utility function u by v(x) = au(x) + b for constants a and b, with
a > 0, then decisions made under the expected utility criterion will be the same
under v as under u since, for example,

E [v(W + X1)] > E [v(W + X2)]

if and only if

aE [u(W + X1)] + b > aE [u(W + X2)] + b.

2.4 Jensen’s inequality

Jensen’s inequality is a well-known result in the field of probability theory. How-
ever, it also has important applications in actuarial science. Jensen’s inequality
states that if u is a concave function, then

E [u(X )] ≤ u (E [X ]) (2.3)

provided that these quantities exist.
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We now prove Jensen’s inequality on the assumption that there is a Taylor
series expansion of u about the point a. Thus, writing the Taylor series expansion
with a remainder term as

u(x) = u(a) + u′(a)(x − a) + u′′(z)
(x − z)2

2

where z lies between a and x , and noting that u′′(z) < 0, we have

u(x) ≤ u(a) + u′(a)(x − a). (2.4)

Replacing x by the random variable X in equation (2.4) and setting a = E[X ],
we obtain equation (2.3) by taking expected values.

We can use Jensen’s inequality to obtain results relating to appropriate pre-
mium levels for insurance cover, from the viewpoint of both an individual and
an insurer. Consider first an individual whose wealth is W . Suppose that the
individual can obtain complete insurance protection against a random loss, X .
Then the maximum premium that the individual is prepared to pay for this
protection is P , where

u(W − P) = E [u(W − X )] . (2.5)

This follows by the expected utility criterion and the fact that u′(x) > 0, so that
for any premium P̄ < P ,

u(W − P̄) > u(W − P).

By Jensen’s inequality,

E [u(W − X )] ≤ u (E [W − X ]) = u (W − E [X ]) ,

so by equation (2.5),

u(W − P) ≤ u (W − E [X ]) .

As u is an increasing function, it follows that P ≥ E [X ]. This result simply
states that the maximum premium that the individual is prepared to pay is at
least equal to the expected loss.

A similar line of argument applies from an insurer’s viewpoint. Suppose
that an insurer whose utility function is v and whose wealth is W is asked by
an individual to provide complete insurance protection against a random loss,
X . From the insurer’s viewpoint, the minimum acceptable premium for this
protection is �, where

v(W ) = E [v(W + � − X )] . (2.6)
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This follows from the expected utility criterion, noting that the insurer is choos-
ing between offering and not offering insurance. Also, as v is an increasing
function, for any premium �̄ > �,

E
[
v(W + �̄ − X )

]
> E [v(W + � − X )] .

Applying Jensen’s inequality to the right-hand side of equation (2.6) we have

v(W ) = E [v(W + � − X )] ≤ v (W + � − E [X ])

and as v is an increasing function, � ≥ E [X ]. Thus, the insurer requires a
premium that is at least equal to the expected loss, and so an insurance contract
is feasible when P ≥ �.

2.5 Types of utility function

It is possible to construct a utility function by assigning different values to differ-
ent levels of wealth. For example, an individual might set u(0) = 0, u(10) = 5,
u(20) = 8, and so on. Clearly it is more practical to assign values through a
suitable mathematical function. Therefore, we now consider some mathemat-
ical functions which may be regarded as having suitable forms to be utility
functions.

2.5.1 Exponential

A utility function of the form u(x) = − exp{−βx}, where β > 0, is called an
exponential utility function. An important feature of this utility function, which
was in evidence in Example 2.1, is that decisions do not depend on the individ-
ual’s wealth. To see this in general, consider the case of an individual with wealth
W who has a choice between n courses of action. Suppose that the i th course of
action will result in random wealth of W + Xi , for i = 1, 2, . . . , n. Then, under
the expected utility criterion, the individual would calculate E[u(W + Xi )] for
i = 1, 2, . . . , n, and would choose course of action j if and only if

E[u(W + X j )] > E[u(W + Xi )] (2.7)

for i = 1, 2, . . . , n, and i ��= j . Inserting for u in equation (2.7) this condition
becomes

−E
[
exp{−β(W + X j )}

]
> −E

[
exp{−β(W + Xi )}

]
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or, equivalently,

E
[
exp{−β X j }

]
< E[exp{−β Xi }],

so that the individual’s wealth, W , does not affect the decision. An appealing
feature of decision making using an exponential utility function is that decisions
are based on comparisons between moment generating functions. In a sense,
these moment generating functions capture all the characteristics of the random
outcomes being compared, so that comparisons are based on a range of features.
This contrasts with other utility functions. For example, for the quadratic utility
function discussed below, comparisons depend only on the first two moments
of the random outcomes.

The maximum premium, P , that an individual with utility function u(x) =
−exp{−βx} would be prepared to pay for insurance against a random loss, X ,
is

P = β−1 log MX (β), (2.8)

a result that follows from equation (2.5).

Example 2.2 Show that the maximum premium, P, that an individual with utility
function u(x) = −exp{−βx} is prepared to pay for complete insurance cover
against a random loss, X, where X ∼ N (µ, σ 2), is an increasing function of
β, and explain this result.

Solution 2.2 Since X ∼ N (µ, σ 2), MX (β) = exp
{
µβ + 1

2σ 2β2
}
, and hence

by equation (2.8),

P = µ + 1
2σ 2β,

so that P is an increasing function of β. To interpret this result, note that β is
the coefficient of risk aversion under this exponential utility function, since

r (x) = −u′′(x)

u′(x)
= β,

independent of x. Thus, the more risk averse an individual is, that is the higher
the value of β, the higher the value of P.

Example 2.3 An individual is facing a random loss, X, where X ∼ γ (2, 0.01),
and can obtain complete insurance cover against this loss for a premium
of 208. The individual makes decisions on the basis of an exponential util-
ity function with parameter 0.001. Is the individual prepared to insure for this
premium?



2.5 Types of utility function 33

Solution 2.3 The maximum premium the individual is prepared to pay is given
by equation (2.8), with

MX (β) =
(

0.01

0.01 − β

)2

and β = 0.001. Thus, the maximum premium is

1

0.001
log

(
0.01

0.009

)2

= 210.72,

so that the individual would be prepared to pay a premium of 208.

2.5.2 Quadratic

A utility function of the form u(x) = x − βx2, for x < 1/(2β) and β > 0,
is called a quadratic utility function. The use of this type of utility function
is restricted by the constraint x < 1/(2β), which is required to ensure that
u′(x) > 0. Thus, we cannot apply the function to problems under which random
outcomes are distributed on (−∞,∞).

As indicated in the previous section, decisions made using a quadratic utility
function depend only on the first two moments of the random outcomes, as
illustrated in the following examples.

Example 2.4 An individual whose wealth is W has a choice between Invest-
ments 1 and 2, which will result in wealth of W + X1 and W + X2 respectively,
where E[X1] = 10, V [X1] = 2 and E[X2] = 10.1. The individual makes deci-
sions on the basis of a quadratic utility function with parameter β = 0.002. For
what range of values for V [X2] will the individual choose Investment 1 when
W = 200? Assume that Pr (W + Xi < 250) = 1 for i = 1 and 2.

Solution 2.4 The individual will choose Investment 1 if and only if

E [u(W + X1)] > E [u(W + X2)] ,

or, equivalently,

E
[
200 + X1 − β (200 + X1)2

]
> E

[
200 + X2 − β (200 + X2)2

]
,

where β = 0.002. After some straightforward algebra, this condition becomes

E [X1] (1 − 400β) − βE
[
X2

1

]
> E [X2] (1 − 400β) − βE

[
X2

2

]
,

or

E
[
X 2

2

]
> (E [X2] − E [X1])

(
β−1 − 400

) + E
[
X2

1

] = 112,

which is equivalent to V [X2] > 9.99.
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Example 2.5 An insurer is considering offering complete insurance cover
against a random loss, X, where E[X ] = V [X ] = 100 and Pr(X > 0) = 1.
The insurer adopts the utility function u(x) = x − 0.001x2 for decision mak-
ing purposes. Calculate the minimum premium that the insurer would accept
for this insurance cover when the insurer’s wealth, W , is (a) 100, (b) 200 and
(c) 300.

Solution 2.5 The minimum premium, �, is given by

u(W ) = E [u (W + � − X )] ,

so when W = 100, we have

u(100) = 90

= E
[
100 + � − X − 0.001

(
(100 + �)2 − 2 (100 + �) X + X2

)]
= 100 + � − E[X ]

−0.001
(
(100 + �)2 − 2 (100 + �) E [X ] + E

[
X2

])
.

This simplifies to

�2 − 1000� + 90 100 = 0,

which gives � = 100.13. Similarly, when W = 200 we find that � = 100.17,
and when W = 300, � = 100.25. We note that � increases as W increases,
and that this is an undesirable property as we would expect that as the insurer’s
wealth increases, the insurer should be better placed to absorb random losses
and hence should be able to reduce the minimum acceptable premium.

2.5.3 Logarithmic

A utility function of the form u(x) = β log x , for x > 0 and β > 0, is called
a logarithmic utility function. As u(x) is defined only for positive values of x ,
this utility function is unsuitable for use in situations where outcomes could
lead to negative wealth.

Individuals who use a logarithmic utility function are risk averse since

u′(x) = β

x
> 0 and u′′(x) = −β

x2
< 0,

and the coefficient of risk aversion is thus

r (x) = 1

x
,

so that risk aversion is a decreasing function of wealth.
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Example 2.6 An investor who makes decisions on the basis of a logarithmic
utility function is considering investing in shares of one of n companies. The in-
vestor has wealth B, and investment in shares of company i will result in wealth
B Xi , for i = 1, 2, . . . , n. Show that the investment decision is independent of B.

Solution 2.6 The investor prefers the shares of company i to those of company
j if and only if

E [u(B Xi )] > E
[
u(B X j )

]
.

Now

E [u(B Xi )] = E
[
β log (B Xi )

] = βE
[
log B

] + βE
[
log Xi

]
,

so the investor prefers the shares of company i to those of company j if and
only if

E
[
log Xi

]
> E

[
log X j

]
,

independent of B.

The solution to the above example highlights a major difficulty in using a
logarithmic utility function, namely that, in general, it is difficult to find closed
form expressions for quantities like E[log X ]. A notable exception is when X
has a lognormal distribution.

2.5.4 Fractional power

A utility function of the form u(x) = xβ , for x > 0 and 0 < β < 1, is called a
fractional power utility function. As with a logarithmic utility function, u(x) is
defined only for positive x , and so its applications are limited in the same way
as for a logarithmic utility function.

Example 2.7 An individual is facing a random loss, X, that is uniformly dis-
tributed on (0, 200). The individual can buy partial insurance cover against
this loss under which the individual would pay Y = min(X, 100), so that the
individual would pay the loss in full if the loss was less than 100, and would
pay 100 otherwise. The individual makes decisions using the utility function
u(x) = x2/5. Is the individual prepared to pay 80 for this partial insurance
cover if the individual’s wealth is 300?

Solution 2.7 The individual is prepared to pay 80 for this partial insurance
cover if

E[u(300 − X )] ≤ E[u(300 − 80 − Y )]
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since the individual is choosing between not insuring (resulting in wealth of
300 − X) and insuring, in which case the resulting wealth is a random variable
as the individual is buying partial insurance cover. Noting that the density
function of X is 1/200, we have

E[u(300 − X )] = 1

200

∫ 200

0
(300 − x)2/5 dx

= −5

200 × 7
(300 − x)7/5

∣∣∣∣
200

0

= 8.237,

and

E[u(300 − 80 − Y )] = 1

200

(∫ 100

0
(220 − x)2/5 dx +

∫ 200

100
1202/5 dx

)

= 1

200

(
−5

7
(220 − x)7/5

∣∣∣∣
100

0

+ 100 × 1202/5

)

= 7.280.

Hence the individual is not prepared to pay 80 for this partial insurance cover.

As with the logarithmic utility function, it is generally difficult to obtain
closed form solutions in problems involving fractional power utility functions.

2.6 Notes and references

A comprehensive reference on utility theory is Gerber and Pafumi (1998), which
discusses applications in both risk theory and finance. For a more general dis-
cussion of the economics of insurance, including applications of utility theory,
see Borch (1990).

2.7 Exercises

1. An insurer, whose current wealth is W , uses the utility function

u(x) = x − x2

2β
,

where x < β, for decision making purposes. Show that the insurer is risk
averse, and that the insurer’s risk aversion coefficient, r (x), is an increasing
function of x .
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2. An individual is facing a random loss, X , which is uniformly distributed on
(0, 200). The individual can purchase partial insurance cover under which
the insurer will pay max(0, X − 20), and the premium for this cover is 85.
The individual has wealth 250 and makes decisions on the basis of the
utility function u(x) = x2/3 for x > 0.
(a) Show that the individual is risk averse.
(b) Will the individual purchase insurance cover?

3. An insurer has been asked to provide complete insurance cover against a
random loss, X , where X ∼ N (106, 108). Calculate the minimum premium
that the insurer would accept if the insurer bases decisions on the utility
function u(x) = − exp{−0.002x}.

4. An investor makes decisions on the basis of the utility function
u(x) = √

x where x > 0. The investor is considering investing in shares,
and assumes that an investment of A in share i will accumulate to AXi at
the end of one year, where Xi has a lognormal distribution with parameters
µi and σ i . Suppose that the investor has a choice between Share 1 and
Share 2.
(a) Show that the decision whether to invest in Share 1 or in Share 2 is

independent of A.
(b) Suppose that for Share 1, µ1 = 0.09 and σ 1 = 0.02, and for Share 2,

µ2 = 0.08. For what range of values for σ 2 will the investor choose to
invest in Share 2?

(c) Now suppose that the expected accumulation is the same under each
share but the variance of the accumulation is smaller for Share 1. Show
that the investor will choose Share 1 and give an interpretation of this
result.

5. An insurer has offered an individual insurance cover against a random loss,
X , where X has a mixed distribution with distribution function F given by

F(x) =
{

0 for x < 0
1 − 0.2e−0.01x for x ≥ 0

.

The insurance cover includes a policy excess of 20. Calculate the minimum
premium that the insurer would accept if the insurer bases decisions on the
utility function u(x) = − exp{−0.005x}.
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Principles of premium calculation

3.1 Introduction

Although we have previously used the term premium, we have not formally
defined it. A premium is the payment that a policyholder makes for complete
or partial insurance cover against a risk. In this chapter we describe and discuss
some ways in which premiums may be calculated, but we consider premium
calculation from a mathematical viewpoint only. In practice, insurers have to
take account not only of the characteristics of risks they are insuring, but other
factors such as the premiums charged by their competitors.

We denote by �X the premium that an insurer charges to cover a risk X .
When we refer to a risk X , what we mean is that claims from this risk are
distributed as the random variable X . The premium �X is some function of
X , and a rule that assigns a numerical value to �X is referred to as a premium
calculation principle. Thus, a premium principle is of the form �X = φ(X )
where φ is some function. In this chapter we start by describing some desirable
properties of premium calculation principles. We then list some principles and
consider which of the desirable properties they satisfy.

3.2 Properties of premium principles

There are many desirable properties for premium calculation principles. The
following list is not exhaustive, but it does include most of the basic properties
for premium principles.

(1) Non-negative loading. This property requires that �X ≥ E[X ], that is that
the premium should not be less than the expected claims. In Chapter 7 we

38
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will see the importance of this property in the context of ruin
theory.

(2) Additivity. This property requires that if X1 and X2 are independent risks,
then the premium for the combined risk, denoted �X1+X2 , should equal
�X1 + �X2 . If this property is satisfied, then there is no advantage, either
to an individual or an insurer, in combining risks or splitting them, as the
total premium does not alter under such courses of action.

(3) Scale invariance. This property requires that if Z = aX where a > 0 then
�Z = a�X . As an example of how this might apply, imagine that the
currency of the United Kingdom changes from sterling to euros with one
pound sterling being converted to a euros. Then, if a British insurer uses a
scale invariant premium principle, a premium of £100 sterling would
change to 100a euros.

(4) Consistency. This property requires that if Y = X + c where c > 0, then
we should have �Y = �X + c. Thus, if the distribution of Y is the
distribution of X shifted by c units, then the premium for risk Y should be
that for risk X increased by c.

(5) No ripoff. This property requires that if there is a (finite) maximum claim
amount for the risk, say xm , then we should have �X ≤ xm . If this
condition is not satisfied, then there is no incentive for an individual to
effect insurance.

3.3 Examples of premium principles

3.3.1 The pure premium principle

The pure premium principle sets

�X = E [X ] .

Thus, the pure premium is equal to the insurer’s expected claims under the risk.
From an insurer’s point of view, the pure premium principle is not a very

attractive one. The premium covers the expected claims from the risk and con-
tains no loading for profit or against an adverse claims experience. It is unlikely
that an insurer who calculates premiums by this principle will remain in busi-
ness very long. In the examples given below, the premium will exceed the pure
premium, and the excess over the pure premium is referred to as the premium
loading.

It is a straightforward exercise to show that the pure premium principle
satisfies all five properties in Section 3.2.



40 Principles of premium calculation

3.3.2 The expected value principle

The expected value principle sets

�X = (1 + θ )E [X ] ,

where θ > 0 is referred to as the premium loading factor. The loading in the
premium is thus θ E [X ].

The expected value principle is a very simple one. However, its major de-
ficiency is that it assigns the same premium to all risks with the same mean.
Intuitively, risks with identical means but different variances should have dif-
ferent premiums.

The expected value principle satisfies the non-negative loading property
since (1 + θ )E[X ] ≥ E[X ]. (Strictly this requires that E[X ] ≥ 0, but this is
invariably the case in practice.) Similarly, the principle is additive since

(1 + θ )E[X1 + X2] = (1 + θ )E[X1] + (1 + θ )E[X2],

and is scale invariant since for Z = aX ,

�Z = (1 + θ )E[Z ]

= a(1 + θ )E[X ]

= a�X .

The expected value principle is not consistent, since for Y = X + c,

�Y = (1 + θ )(E[X ] + c) > �X + c.

An alternative way of showing that a premium calculation principle does not
satisfy a particular property is to construct a counter example. Thus, we can
see that the no ripoff property is not satisfied by letting Pr(X = b) = 1 where
b > 0. Then as θ > 0, �X = (1 + θ )b > b.

3.3.3 The variance principle

Motivated by the fact that the expected value principle takes account only of
the expected claims, the variance principle sets

�X = E [X ] + αV [X ] ,

where α > 0. Thus, the loading in this premium is proportional to V [X ].
Since α > 0, the variance principle clearly has a non-negative loading. The

principle is additive since V [X1 + X2] = V [X1] + V [X2] when X1 and X2 are
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independent, so that

�X1+X2 = E [X1 + X2] + αV [X1 + X2]

= E [X1] + E [X2] + αV [X1] + αV [X2]

= �X1 + �X2 .

The principle is also consistent since for Y = X + c, V [Y ] = V [X ], and so

�Y = E [Y ] + αV [Y ]

= E [X ] + c + αV [X ]

= �X + c.

However, the variance principle is not scale invariant since for Z = aX ,

�Z = E [Z ] + αV [Z ]

= aE [X ] + αa2V [X ]

�= a�X ,

nor does it satisfy the no ripoff property. To see this, let

Pr (X = 8) = Pr (X = 12) = 0.5.

Then E[X ] = 10 and V [X ] = 4. Hence �X = 10 + 4α which exceeds 12 when
α > 0.5.

3.3.4 The standard deviation principle

The standard deviation principle sets

�X = E [X ] + αV [X ]1/2 ,

where α > 0. Thus, under this premium principle, the loading is proportional to
the standard deviation of X . Although the motivation for the standard deviation
principle is the same as for the variance principle, these two principles have
different properties.

As in the case of the variance principle, as α > 0 the standard deviation
principle clearly has a non-negative loading. The principle is consistent since
for Y = X + c,

�Y = E [Y ] + αV [Y ]1/2

= E [X ] + c + αV [X ]1/2

= �X + c,
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and is scale invariant since for Z = aX ,

�Z = E [Z ] + αV [Z ]1/2

= aE [X ] + αaV [X ]1/2

= a�X .

The standard deviation principle is not additive since standard deviations are
not additive, nor does it satisfy the no ripoff condition. This final point can be
seen by considering the example at the end of the discussion on the variance
principle.

3.3.5 The principle of zero utility

Suppose that the insurer has utility function u(x) such that u′(x) > 0 and
u′′(x) < 0. The principle of zero utility sets

u(W ) = E[u(W + �X − X )], (3.1)

where W is the insurer’s surplus. Thus, the premium will in general depend on
the insurer’s surplus. An exception is when the utility function is exponential,
that is u(x) = − exp{−βx}, where β > 0. In this case equation (3.1) yields

�X = β−1 log E[exp{β X}] (3.2)

and we refer to the premium principle as the exponential principle.
The exponential principle is an attractive one as it is based on the moment

generating function of X and hence incorporates more information about X
than any of the principles discussed so far.

The principle of zero utility satisfies the non-negative loading property since

u(W ) = E[u(W + �X − X )] ≤ u(W + �X − E[X ])

(by Jensen’s inequality). Since u ′(x) > 0, we have �X ≥ E[X ]. The principle
is consistent since for Y = X + c, �Y is given by

u(W ) = E[u(W + �Y − Y )],

and

E[u(W + �Y − Y )] = E[u(W + �Y − c − X )]

so that �Y − c = �X . The no ripoff property is also satisfied since

W + �X − X ≥ W + �X − xm
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and so

u(W ) = E[u(W + �X − X )] ≥ E[u(W + �X − xm)] = u(W + �X − xm).

As u′(x) > 0, we have �X − xm ≤ 0.
In general, the principle of zero utility is not additive (see Exercise 3), but the

exponential principle is. This latter statement follows by noting that equation
(3.2) gives

�X1+X2 = β−1 log E[exp{β (X1 + X2)}]
= β−1 log E

[
exp{β X1}

]
E

[
exp{β X2}

]
= β−1 log E

[
exp{β X1}

] + β−1 log E
[
exp{β X2}

]
= �X1 + �X2 ,

where the second line follows by the independence of X1 and X2.
The principle of zero utility is not scale invariant, as the following exam-

ple illustrates. Suppose that u(x) = − exp{−βx}, X ∼ N (µ, σ 2), and Y = αX
where α > 0. Then

�X = β−1 log E[exp{β X}] = µ + 1
2σ 2β

and so

�Y = µα + 1
2σ 2βα2 �= α�X .

3.3.6 The Esscher principle

The Esscher premium principle sets

�X = E[Xeh X ]

E[eh X ]
,

where h > 0.
We can interpret the Esscher premium as being the pure premium for a risk X̃

that is related to X as follows. Suppose that X is a continuous random variable
on (0, ∞) with density function f , and define the function g by

g(x) = ehx f (x)∫ ∞
0 ehx f (x)dx

. (3.3)

Then g is the density function of a random variable X̃ which has distribution
function

G(x) =
∫ x

0 ehy f (y) dy

MX (h)
.
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The distribution function G is known as the Esscher transform of F with
parameter h. As

MX̃ (t) =
∫ ∞

0
etx g (x) dx,

equation (3.3) yields

MX̃ (t) = MX (t + h)

MX (h)
.

Example 3.1 Let F(x) = 1 − exp{−λx}, x ≥ 0. What is the Esscher transform
of F with parameter h, where h < λ?

Solution 3.1 When X ∼ F, MX (t) = λ/(λ − t) and so

MX̃ (t) = MX (t + h)

MX (h)
= λ − h

λ − h − t

so that the Esscher transform of F is G(x) = 1 − exp{−(λ − h)x}.
The density g is just a weighted version of the density f since we can

write equation (3.3) as g(x) = w(x) f (x) where w(x) = ehx/MX (h). As h > 0,
w′(x) > 0, and so increasing weight attaches as x increases. From Example
3.1, it follows that the Esscher transform with parameter h = 0.2 of the density
f (x) = e−x is g(x) = 0.8e−0.8x , and these functions are shown in Fig. 3.1. Note
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Figure 3.1 Exponential density, f , and its Esscher transform, g.
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that initially the density g is below the density f , but in the tail the opposite is
true, so that the transform results in a density with a fatter tail.

In the context of premium calculation, the relationship

MX̃ (t) = MX (t + h)

MX (h)

is important since

E[X̃ ] =
∫ ∞

0 xehx f (x) dx∫ ∞
0 ehx f (x) dx

= E[Xeh X ]

E[eh X ]
= �X ,

that is the mean of X̃ gives the Esscher premium �X .

Example 3.2 Let X be exponentially distributed with mean 1. Find �X under
the Esscher premium principle with parameter h < 1.

Solution 3.2 From Example 3.1, it follows that the Esscher transform of this
exponential distribution is the exponential distribution with parameter 1 − h,

and the Esscher premium is the mean of this distribution, that is

�X = 1

1 − h
.

The Esscher principle satisfies the non-negative loading property. This can
be seen by first noting that when h = 0, MX̃ (t) = MX (t) and so E[X̃ ] = �X =
E[X ]. Next, for h ≥ 0,

E[X̃r ] = dr

dtr
MX̃ (t)

∣∣
t=0

= dr

dtr

MX (t + h)

MX (h)

∣∣∣∣
t=0

= M (r )
X (h)

MX (h)
,

and so
d

dh
�X = d

dh
E[X̃ ]

= d

dh

M
′
X (h)

MX (h)

= 1

MX (h)2

(
M (2)

X (h)MX (h) − M
′
X (h)2

)
= E[X̃2] − E[X̃ ]2 ≥ 0.

Hence �X is a non-decreasing function of h and so �X ≥ E[X ] for all h ≥ 0.
Note that Example 3.2 above gives an illustration of this.
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The Esscher principle is consistent since for Y = X + c,

�Y = E
[
Y ehY

]
E

[
ehY

]
= E

[
(X + c)eh(X+c)

]
E

[
eh(X+c)

]
= E

[
Xeh X

]
ehc + cE

[
eh X

]
ehc

E
[
eh X

]
ehc

= E
[
Xeh X

]
E

[
eh X

] + c

= �X + c.

The principle is also additive since

�X1+X2 = E
[
(X1 + X2) eh(X1+X2)

]
E

[
eh(X1+X2)

]
= E

[
X1eh X1

]
E

[
eh X2

] + E
[
eh X1

]
E

[
X2eh X2

]
E

[
eh X1

]
E

[
eh X2

]
= E

[
X1eh X1

]
E

[
eh X1

] + E
[
X2eh X2

]
E

[
eh X2

]
= �X1 + �X2 .

The no ripoff condition is also satisfied since if xm is the largest possible claim
amount, so that Pr(X ≤ xm) = 1, then

Xeh X ≤ xmeh X

and so

�X = E
[
Xeh X

]
E

[
eh X

] ≤ E
[
xmeh X

]
E

[
eh X

] = xm .

The Esscher principle is not, however, scale invariant. To see this, let us now
denote the Esscher premium with parameter h for a risk X as �X (h). Then if
Z = a X , the Esscher premium for Z is �Z (h) where

�Z (h) = E[Zeh Z ]

E[eh Z ]
= aE[Xeah X ]

E[eah X ]
= a�X (ah) �= a�X (h).

Thus �Z (h) �= a�X (h) unless a = 1.
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3.3.7 The risk adjusted premium principle

Let X be a non-negative valued random variable with distribution function F .
Then the risk adjusted premium principle sets

�X =
∫ ∞

0
[Pr(X > x)]1/ρ dx =

∫ ∞

0
[1 − F(x)]1/ρ dx,

where ρ ≥ 1 is known as the risk index.
The essence of this principle is similar to that of the Esscher principle. The

Esscher transform weights the distribution of X , giving increasing weight to
(right) tail probabilities. The risk adjusted premium is also based on a transform,
as follows. Define the distribution function H of a non-negative random variable
X∗ by

1 − H (x) = [1 − F(x)]1/ρ.

Since

E[X∗] =
∫ ∞

0
[1 − H (x)] dx

it follows that �X = E[X∗].

Example 3.3 Let X be exponentially distributed with mean 1/λ. Find the risk
adjusted premium �X .

Solution 3.3 We have

1 − F(x) = e−λx

and so

1 − H (x) = e−λx/ρ.

Thus, X∗ has an exponential distribution with mean ρ/λ, and so �X = ρ/λ.

Example 3.4 Let X ∼ Pa(α, λ). Find the risk adjusted premium �X .

Solution 3.4 We have

1 − F(x) =
(

λ

λ + x

)α

and so

1 − H (x) =
(

λ

λ + x

)α/ρ

.

Thus, X∗ ∼ Pa(α/ρ, λ), and hence �X = ρλ/(α − ρ) provided that ρ < α.



48 Principles of premium calculation

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 1 2 3 4 5
x

f (x)

h (x)

Figure 3.2 Pa(2, 1) density, f , and its weighted version, h.

When X is a continuous random variable with density function f, the density
function of X ∗ is h where

h(x) = 1

ρ
[1 − F(x)](1/ρ)−1 f (x) (3.4)

so that the density function of X∗ is simply a weighted version of the density
function of X . The weight attaching to f increases as x increases – see Exer-
cise 7. Figure 3.2 shows the densities f and h from Example 3.4 when α = 2,
λ = 1 and ρ = 1.5. The density h is initially below the density f , but as x
increases, this changes so that, as with the Esscher transform, the transformed
density has a fatter tail.

The risk adjusted premium principle satisfies all properties listed in Sec-
tion 3.2 except additivity. To see that �X ≥ E [X ], note that since ρ ≥ 1, we
have

1 − F(x) ≤ [1 − F(x)]1/ρ

for all x > 0 and since

E[X ] =
∫ ∞

0
[1 − F(x)] dx

it follows that �X ≥ E[X ]. Consistency can be shown by noting that if Y is
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defined by Y = X + c, then

Pr (Y > x) =
{

1 for x < c
1 − F(x − c) for x ≥ c

.

Then

�Y =
∫ ∞

0
[Pr (Y > x)]1/ρ dx

=
∫ c

0
dx +

∫ ∞

c
[1 − F(x − c)]1/ρ dx

= c +
∫ ∞

0
[1 − F(y)]1/ρ dy

= c + �X .

The scale invariance of the principle follows by noting that if Z = aX , then

Pr (Z > x) = Pr (X > x/a)

so that

�Z =
∫ ∞

0
[Pr (Z > x)]1/ρ dx

=
∫ ∞

0
[Pr (X > x/a)]1/ρ dx

= a
∫ ∞

0
[Pr (X > y)]1/ρ dy

= a�X .

The no ripoff property is satisfied since if xm is such that F(xm) = 1, then

�X =
∫ xm

0
[1 − F(x)]1/ρdx ≤

∫ xm

0
dx = xm .

We can show that the additivity property does not hold by considering two
independent and identically distributed risks, X1 and X2, with

Pr(X1 = 0) = Pr(X1 = 1) = 0.5.

Let the risk index be ρ = 2. Then �X1 = �X2 = 0.51/2 and �X1+X2 = 0.5(1 +
31/2), and a simple calculation shows that �X1 + �X2 > �X1+X2 .
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3.4 Notes and references

Which premium principle should an insurer use? We have so far avoided this
question simply because there is no one correct answer. The discussion in the
previous section shows that some premium principles have a greater number
of desirable properties than others. Even though mathematical considerations
alone are unlikely to determine the premium an insurer charges to cover a risk,
it would be reasonable for an insurer to decide which properties are relevant for
a given risk, and to select a principle which satisfies these properties.

Other examples of premium principles and desirable properties for premium
principles can be found in the actuarial literature, in particular in Goovaerts
et al. (1984). Bühlmann (1980) derives the Esscher principle using economic
arguments, while Gerber (1979) discusses properties of the exponential prin-
ciple in some detail. In particular, he shows that the principle of zero utility is
additive if and only if it is the net premium principle or the exponential prin-
ciple. Properties of the risk adjusted premium principle are discussed at length
by Wang (1995).

3.5 Exercises

1. A premium principle is said to be sub-additive if for two risks X1 and X2

(which may be dependent), �X1+X2 ≤ �X1 + �X2 . Under what conditions
is the variance principle sub-additive?

2. The mean value principle states that the premium, �X , for a risk X is given
by

�X = v−1(E[v(X )])

where v is a function such that v′(x) > 0 and v′′(x) ≥ 0 for x > 0.
(a) Calculate �X when v(x) = x2 and X ∼ γ (2, 2).
(b) Construct a counter example to show that this principle is not

consistent.
3. Let X1 have probability function

Pr(X1 = 80) = 0.5 = 1 − Pr(X1 = 120)

and let X2 have probability function

Pr(X2 = 90) = 0.6 = 1 − Pr(X2 = 120).

An insurer has wealth 300 and calculates premiums using the principle of
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zero utility with utility function

u(x) = x − 0.001x2

for x < 500. Calculate �X1 , �X2 and �X1+X2 and hence verify that the
principle of zero utility is not additive in general.

4. Let F be the distribution function of a random variable distributed as P(λ).
What is the Esscher transform of F with parameter h?

5. Let X ∼ γ (2, 0.01). Given that �X = 250 and that �X has been calculated
by the Esscher principle with parameter h, calculate h.

6. Let X be uniformly distributed on (5, 15). Calculate �X using the risk
adjusted premium principle with risk index 1.2.

7. Consider the risk adjusted premium principle and equation (3.4). Show that
the weight attaching to f is an increasing function of x when ρ > 1.

8. The premium for a risk X is calculated by the exponential principle with
parameter β. Let �X (β) denote this premium.
(a) Show that lim

β→0+
�′

X (β) = 1
2 V [X ].

(b) Show that (β2�′
X (β))′ > 0, and hence deduce that �X (β) is an

increasing function of β. (Hint: apply results about Esscher
transforms.)
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The collective risk model

4.1 Introduction

In this chapter we consider the aggregate claims arising from a general insurance
risk over a short period of time, typically one year. We use the term ‘risk’ to
describe a collection of similar policies, although the term could also apply to an
individual policy. As indicated in Chapter 1, at the start of a period of insurance
cover the insurer does not know how many claims will occur, and, if claims
do occur, what the amounts of these claims will be. It is therefore necessary to
construct a model that takes account of these two sources of variability. In the
following, we consider claims arising over a one-year time interval purely for
ease of presentation, but any unit of time can be used.

We start by modelling aggregate claims in Section 4.2 as a random variable,
S, and derive expressions for the distribution function and moments of S. We
then consider the important special case when the distribution of S is compound
Poisson, and we give an important result concerning the sum of independent
compound Poisson random variables. In Section 4.4 we consider the effect of
reinsurance on aggregate claims, both from the point of view of the insurer and
the reinsurer.

The remainder of the chapter is devoted to the important practical question
of calculating an aggregate claims distribution. In Section 4.5 we introduce
certain classes of counting distribution for the number of claims from a risk.
The importance of these classes is that if we assume that individual claims
under the risk are modelled as discrete random variables, it is then possible to
calculate the probability function for aggregate claims recursively. We conclude
the chapter by describing two methods of approximating an aggregate claims
distribution.

52
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4.2 The model

We define the random variable S to be the aggregate (i.e. total) amount of claims
arising from a risk in one year. Let the random variable N denote the number
of claims from the risk in this year, and let the random variable Xi denote
the amount of the i th claim. The aggregate claim amount is just the sum of
individual claim amounts, so we can write

S =
N∑

i=1

Xi

with the understanding that S = 0 when N = 0. (If there are no claims, the
aggregate claim amount is trivially zero.) Throughout this chapter, we model
individual claim amounts as non-negative random variables with a positive
mean.

We now make two important assumptions. First we assume that {Xi }∞i=1 is
a sequence of independent and identically distributed random variables, and,
second, we assume that the random variable N is independent of {Xi }∞i=1. These
assumptions say that the amount of any claim does not depend on the amount
of any other claim, and that the distribution of claim amounts does not change
throughout the year. They also state that the number of claims has no effect on
the amounts of claims.

Typically, our risk is a portfolio of insurance policies, and the name collective
risk model arises from the fact that we consider the risk as a whole. In particular,
we are counting the number of claims from the portfolio, and not from individual
policies.

4.2.1 The distribution of S

We start with some notation. Let G(x) = Pr(S ≤ x) denote the distribution
function of aggregate claims, F(x) = Pr(X1 ≤ x) denote the distribution func-
tion of individual claim amounts, and let pn = Pr(N = n) so that {pn}∞n=0 is the
probability function for the number of claims.

We can derive the distribution function of S by noting that the event {S ≤ x}
occurs if n claims occur, n = 0, 1, 2, . . . , and if the sum of these n claims is
no more than x . Thus, we can represent the event {S ≤ x} as the union of the
mutually exclusive events {S ≤ x and N = n}, so that

{S ≤ x} =
∞⋃

n=0

{S ≤ x and N = n}
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so that

G(x) = Pr(S ≤ x) =
∞∑

n=0

Pr (S ≤ x and N = n) .

Now

Pr (S ≤ x and N = n) = Pr (S ≤ x | N = n) Pr(N = n)

and

Pr (S ≤ x | N = n) = Pr

(
n∑

i=1

Xi ≤ x

)
= Fn∗(x).

Thus, for x ≥ 0,

G(x) =
∞∑

n=0

pn Fn∗(x), (4.1)

recalling from Chapter 1 that F0∗(x) is defined to be 1 for x ≥ 0, and zero
otherwise.

In principle, equation (4.1) provides a means of calculating the aggregate
claims distribution. However, the convolution Fn∗ does not exist in a closed
form for many individual claim amount distributions of practical interest such
as Pareto and lognormal. Even in cases when a closed form does exist, the
distribution function in equation (4.1) still has to be evaluated as an infinite
sum.

By an analogous argument, in the case when individual claim amounts are
distributed on the positive integers with probability function

f j = F( j) − F( j − 1)

for j = 1, 2, 3, . . . , the probability function {gx}∞x=0 of S is given by g0 = p0,
and for x = 1, 2, 3, . . . ,

gx =
∞∑

n=1

pn f n∗
x (4.2)

where f n∗
x = Pr

(∑n
i=1 Xi = x

)
. Formula (4.2) is not much more useful than

formula (4.1). However, for certain distributions for N , gx can be calcu-
lated recursively for x = 1, 2, 3, . . . using g0 as the starting value for the re-
cursive calculation, and this approach is discussed in detail in Sections 4.5
to 4.7.
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4.2.2 The moments of S

The moments and moment generating function of S can be calculated using
conditional expectation arguments. The key results are that for any two random
variables Y and Z for which the relevant moments exist,

E [Y ] = E [E (Y |Z )] (4.3)

and

V [Y ] = E [V (Y |Z )] + V [E (Y |Z )] . (4.4)

As an immediate application of equation (4.3) we have

E [S] = E [E (S|N )] .

Now let mk = E
[
Xk

1

]
for k = 1, 2, 3, . . . Then

E [S|N = n] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] = nm1

and as this holds for n = 0, 1, 2, . . . , E [S|N ] = Nm1 and hence

E [S] = E [Nm1] = E[N ]m1. (4.5)

This is a very appealing result as it states that the expected aggregate claim
amount is the product of the expected number of claims and the expected
amount of each claim.

Similarly, using the fact that {Xi }∞i=1 are independent random variables,

V [S|N = n] = V

[
n∑

i=1

Xi

]
=

n∑
i=1

V [Xi ] = n
(
m2 − m2

1

)
so that V [S|N ] = N

(
m2 − m2

1

)
. Then, by applying equation (4.4) we get

V [S] = E [V (S|N )] + V [E (S|N )]

= E
[
N

(
m2 − m2

1

)] + V [Nm1]

= E [N ]
(
m2 − m2

1

) + V [N ]m2
1. (4.6)

Formula (4.6) does not have the same type of natural interpretation as formula
(4.5), but it does show that the variance of S is expressed in terms of the mean
and variance of both the claim number distribution and the individual claim
amount distribution.

The same technique can be used to obtain the moment generating function
of S. We have

MS(t) = E
[
et S

] = E
[
E

(
et S|N)]

,
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and

E
[
et S|N = n

] = E

[
exp

{
t

n∑
i=1

Xi

}]
=

n∏
i=1

E
[
exp {t Xi }

]
where we have again used the independence of {Xi }∞i=1. Further, as {Xi }∞i=1 are
identically distributed,

E
[
et S|N = n

] = MX (t)n

where MX (t) = E
[
exp {t X1}

]
. This leads to

MS(t) = E
[
MX (t)N

]
= E

[
exp

{
log MX (t)N

}]
= E

[
exp {N log MX (t)}]

= MN
[
log MX (t)

]
. (4.7)

Thus MS is expressed in terms of MN and MX .
Similarly, when X1 is a discrete random variable distributed on the non-

negative integers with probability generating function PX , the above arguments
lead to

PS(r ) = PN [PX (r )]

where PS and PN are the probability generating functions of S and N respec-
tively.

In the above development of results, it has been tacitly assumed that all
relevant quantities exist. However, we have seen in Chapter 1 that moments and
moment generating functions may exist only under certain conditions. Thus, for
example, if the second moment of X1 does not exist, then the second moment
of S does not exist either.

4.3 The compound Poisson distribution

When N has a Poisson distribution with parameter λ, we say that S has a com-
pound Poisson distribution with parameters λ and F , and similar terminology
applies in the case of other claim number distributions. Since the mean and
variance of the P(λ) distribution are both λ, it follows from formulae (4.5) and
(4.6) that when S has a compound Poisson distribution

E [S] = λm1
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and

V [S] = λm2.

Further, the third central moment is

E
[
(S − λm1)3

] = λm3. (4.8)

To derive formula (4.8), we can use the moment generating function of S which
by equation (1.1) and formula (4.7) is

MS(t) = exp {λ (MX (t) − 1)} .

Differentiation with respect to t yields

M ′
S(t) = λM ′

X (t)MS(t),

M ′′
S (t) = λM ′′

X (t)MS(t) + λM ′
X (t)M ′

S(t),

and

M ′′′
S (t) = λM ′′′

X (t)MS(t) + 2λM ′′
X (t)M ′

S(t) + λM ′
X (t)M ′′

S (t). (4.9)

Setting t = 0 in formula (4.9) we get

E
[
S3

] = λm3 + 2λm2 E[S] + λm1 E[S2]

= λm3 + 2V [S]E[S] + E[S]E[S2]

= λm3 + 3E[S]E[S2] − 2E[S]3

which yields formula (4.8).
An important point about the compound Poisson distribution that will be

relevant in the context of approximation methods discussed in Section 4.8 is
that the coefficient of skewness is positive under our assumptions that Pr(X1 <

0) = 0 and m1 > 0 (which gives mk > 0 for k = 2, 3, 4, . . .), and hence

Sk[S] = E
[
(S − λm1)3

]
V [S]3/2 = λm3

(λm2)3/2 > 0.

Example 4.1 Let S have a compound Poisson distribution with Poisson
parameter 100, and let the individual claim amount distribution be Pa(4, 1500).
Calculate E[S], V [S] and Sk[S].

Solution 4.1 From Chapter 1 (Section 1.3.3 and Exercise 4) we know that
when X ∼ Pa(α, β), E[X ] = β/(α − 1), E[X 2] = 2β2/(α − 1)(α − 2) and
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E[X3] = 6β3/(α − 1)(α − 2)(α − 3). Thus,

E[S] = 100 × 1500

3
= 50 000,

V [S] = 100 × 2 × 15002

6
= 7.5 × 107,

and

E
[
(S − E[S])3

] = 100 × 15003 = 1.53 × 1011

so that

Sk[S] = 1.53 × 1011(
7.5 × 107

)3/2 = 0.5196.

An important property of compound Poisson random variables is that the sum
of independent, but not necessarily identically distributed, compound Poisson
random variables is itself a compound Poisson random variable. Formally, let
{Si }n

i=1 be independent compound Poisson random variables, with parameters
λi and Fi , and let S = ∑n

i=1 Si . Then S has a compound Poisson distribution
with parameters � and F where � = ∑n

i=1 λi and

F(x) = 1

�

n∑
i=1

λi Fi (x). (4.10)

To prove this, we use the moment generating function of S, noting that

E
[
exp {tS}] = E

[
exp {t(S1 + · · · + Sn)}] =

n∏
i=1

E
[
exp {t Si }

]
since {Si }n

i=1 are independent. Now let Mi denote the moment generating func-
tion of a random variable whose distribution function is Fi . Then, as Si has a
compound Poisson distribution,

E
[
exp {t Si }

] = exp {λi (Mi (t) − 1)}
and hence

E
[
exp {tS}] =

n∏
i=1

exp {λi (Mi (t) − 1)}

= exp

{
n∑

i=1

λi (Mi (t) − 1)

}

= exp

{
�

(
n∑

i=1

λi Mi (t)

�
− 1

)}
.
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It then follows that S has a compound Poisson distribution by the uniqueness
of a moment generating function and by the fact that a random variable whose
distribution function is F has moment generating function

∫ ∞

0
etx dF(x) = 1

�

n∑
i=1

λi

∫ ∞

0
etx d Fi (x) =

n∑
i=1

λi Mi (t)

�
.

This is an important result that has applications not just in the collective risk
model, but, as we shall see in Chapter 5, also to the individual risk model.

Example 4.2 Let S1 have a compound Poisson distribution with Poisson pa-
rameter λ1 = 10, and distribution function F1 for individual claim amounts
where F1(x) = 1 − e−x , x ≥ 0. Let S2 have a compound Poisson distribution
with Poisson parameter λ2 = 15, and distribution function F2 for individual
claim amounts where F2(x) = 1 − e−x (1 + x), x ≥ 0. What is the distribution
of S1 + S2 assuming S1 and S2 are independent?

Solution 4.2 The distribution of S1 + S2 is compound Poisson by the above
result, and the Poisson parameter is λ1 + λ2 = 25. From equation (4.10), the
individual claim amount distribution is

F(x) = λ1

λ1 + λ2
F1(x) + λ2

λ1 + λ2
F2(x)

= 2
5

(
1 − e−x

) + 3
5

(
1 − e−x (1 + x)

)
= 1 − e−x (1 + 3

5 x).

4.4 The effect of reinsurance

In Chapter 1 we introduced both proportional and excess of loss reinsurance.
We now consider the effect of such reinsurance arrangements on an aggregate
claims distribution. Note that as the aggregate claim amount is shared by the
insurer and the reinsurer regardless of the type of reinsurance arrangement, we
can write S as SI + SR where SI denotes the insurer’s aggregate claims, net of
reinsurance, and SR denotes the reinsurer’s aggregate claim amount.

4.4.1 Proportional reinsurance

Under a proportional reinsurance arrangement with proportion retained a, the
insurer pays proportion a of each claim. Thus, the insurer’s net aggregate claim
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amount is

SI =
N∑

i=1

aXi = aS,

with SI = 0 if S = 0. Similarly SR = (1 − a)S.

Example 4.3 Aggregate claims from a risk have a compound Poisson distribu-
tion with Poisson parameter 100 and an individual claim amount distribution
which is exponential with mean 1000. The insurer effects proportional reinsur-
ance with proportion retained 0.8. Find the distribution of SR .

Solution 4.3 As the reinsurer pays 20% of each claim, SR has a compound Pois-
son distribution with Poisson parameter 100 and an individual claim amount
distribution that is exponential with mean 200.

Example 4.4 Aggregate claims from a risk are distributed with mean µ and
standard deviation σ . The insurer of the risk has effected proportional reinsur-
ance with proportion retained a. Find Cov(SI , SR).

Solution 4.4 By definition,

Cov(SI , SR) = E [(SI − aµ) (SR − (1 − a)µ)]

since E [SI ] = aµ and E [SR] = (1 − a)µ. As SI = aS and SR = (1 − a)S,

Cov(SI , SR) = E [a(S − µ)(1 − a)(S − µ)]

= a(1 − a)E
[
(S − µ)2

]
= a(1 − a)σ 2.

4.4.2 Excess of loss reinsurance

Let us assume that the insurer of a risk, S, has effected excess of loss reinsurance
with retention level M . Then we can write

SI =
N∑

i=1

min(Xi , M)

with SI = 0 when N = 0, and

SR =
N∑

i=1

max(0, Xi − M) (4.11)

with SR = 0 when N = 0.
An important point to note is that SR can equal 0 even if N is greater than

zero. This situation would arise if n > 0 claims occurred and each of these n
claims was for an amount less than M , so that the insurer would pay each of
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these claims in full. Thus, there are two ways of considering the reinsurer’s
aggregate claim amount. The first is as specified by equation (4.11), in which
case the interpretation is that each time a claim occurs for the insurer, a claim
also occurs for the reinsurer, and we allow 0 to be a possible claim amount. The
second approach is to count only claims (for the insurer) whose amount exceeds
M as these claims give rise to non-zero claim payments by the reinsurer. Thus,
an alternative way of writing SR is

SR =
NR∑
i=1

X̂ i

with SR = 0 when NR = 0. Here, NR denotes the number of non-zero claims
for the reinsurer, and X̂ i denotes the amount of the i th claim payment by the
reinsurer with formula (1.13) giving

Pr
(
X̂ i ≤ x

) = F(x + M) − F(M)

1 − F(M)
.

To find the distribution of NR , we introduce the sequence of independent and
identically distributed indicator random variables {I j }∞j=1, where I j takes the
value 1 if X j > M , so that there is a non-zero claim payment by the reinsurer,
and I j takes the value 0 otherwise. Then

Pr(I j = 1) = Pr(X j > M) = 1 − F(M)
de f= π M

and

NR =
N∑

i=1

I j ,

with NR = 0 when N = 0. As NR has a compound distribution, its probability
generating function is

PNR (r ) = PN [PI (r )]

where PI is the probability generating function of each indicator random vari-
able, and

PI (r ) = 1 − π M + π Mr.

Example 4.5 Let N ∼ P(λ). What is the distribution of NR?

Solution 4.5 As

PN (r ) = exp {λ (r − 1)} ,
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we have

PNR (r ) = exp {λ (1 − π M + π Mr − 1)}
= exp {λπ M (r − 1)} .

Hence NR ∼ P(λπ M ) by the uniqueness property of probability generating
functions.

Example 4.6 Let N ∼ N B(k, p). What is the distribution of NR?

Solution 4.6 As

PN (r ) =
(

p

1 − qr

)k

where q = 1 − p, we have

PNR (r ) =
(

p

1 − q (1 − π M + π Mr )

)k

=
(

p

p + qπ M − qπ Mr

)k

. (4.12)

Now let p∗ = p/(p + qπ M ) and q∗ = qπ M/(p + qπ M ) = 1 − p∗. Then divi-
sion of both the numerator and the denominator inside the brackets in formula
(4.12) by p + qπ M yields

PNR (r ) =
(

p∗

1 − q∗r

)k

,

so that NR ∼ N B(k, p∗).

Example 4.7 Aggregate claims from a risk have a compound Poisson distribu-
tion with Poisson parameter 200 and an individual claim amount distribution
which is Pa(4, 300) so that

F(x) = 1 −
(

300

300 + x

)3

for x ≥ 0. The insurer of this risk has effected excess of loss reinsurance with re-
tention level 300. Calculate the mean and variance of the reinsurer’s aggregate
claims by two methods.

Solution 4.7 The first approach is to say that SR has a compound Poisson dis-
tribution where the Poisson parameter is 200 and the individual claim amounts
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are distributed as max(0, X − 300), where X ∼ F. Then

E [SR] = 200E [max(0, X − 300)]

= 200
∫ ∞

300
(x − 300)

3 × 3003

(300 + x)4 dx

= 200
∫ ∞

0
y

3 × 3003

(y + 600)4
dy

= 200

8

∫ ∞

0
y

3 × 6003

(y + 600)4
dy

= 7500

since the final integral is the mean of the Pa(3, 600) distribution, and hence
equals 300. Similarly,

V [SR] = 200E
[
max(0, X − 300)2

]
= 200

∫ ∞

300
(x − 300)2 3 × 3003

(300 + x)4 dx

= 200

8

∫ ∞

0
y2 3 × 6003

(y + 600)4
dy

= 9 × 106.

The second approach is to say that SR has a compound Poisson distribution
with Poisson parameter

200 (1 − F(300)) = 200
(

1
2

)3 = 25

and individual claim amounts are distributed as X̂ where

Pr(X̂ ≤ x) = F(x + 300) − F(300)

1 − F(300)
= 1 −

(
600

600 + x

)3

so that X̂ ∼ Pa(3, 600). Then

E [SR] = 25E
[
X̂

] = 25 × 300 = 7500

and

V [SR] = 25E
[
X̂ 2

] = 25 × 6002 = 9 × 106.
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4.5 Recursive calculation of aggregate claims distributions

In this section we derive the Panjer recursion formula which permits recursive
calculation of the aggregate claims distribution when individual claim amounts
are distributed on the non-negative integers and when the claim number dis-
tribution belongs to the (a, b, 0) class of distributions. We therefore start by
defining this class of distributions.

4.5.1 The (a,b,0) class of distributions

A counting distribution is said to belong to the (a, b, 0) class of distributions if
its probability function {pn}∞n=0 can be calculated recursively from the formula

pn =
(

a + b

n

)
pn−1 (4.13)

for n = 1, 2, 3, . . . , where a and b are constants. The starting value for the
recursive calculation is p0 which is assumed to be greater than 0, and the term
‘0’ in (a, b, 0) is used to indicate this fact.

There are exactly three non-trivial distributions in the (a, b, 0) class, namely
Poisson, binomial and negative binomial. To see this, we note that the recursion
scheme given by formula (4.13) starts from

p1 = (a + b)p0.

Hence we require that a + b ≥ 0 since we would otherwise obtain a negative
value for p1. Members of the (a, b, 0) class can be identified by considering
possible values for a and b, as follows.

Suppose first that a + b = 0. Then pn = 0 for n = 1, 2, 3, . . . , and as∑∞
n=0 pn = 1, we see that p0 must equal 1, so that the distribution is degenerate

at 0.
Secondly, let us consider the situation when a = 0. This gives pn =

(b/n)pn−1 for n = 1, 2, 3, . . . so that

pn = b

n

b

n − 1
· · · b

2
bp0 = bn

n!
p0

and again using the fact that
∑∞

n=0 pn = 1, we have

∞∑
n=0

pn = p0

∞∑
n=0

bn

n!
= p0eb

giving p0 = e−b. Hence, when a = 0, we obtain the Poisson distribution with
mean b.
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Thirdly, we consider the situation when a > 0 and a �= −b, so that
a + b > 0. Then by repeated application of formula (4.13) we have

pn =
(

a + b

n

) (
a + b

n − 1

)
· · ·

(
a + b

2

)
(a + b)p0

= (an + b)(a(n − 1) + b) · · · (2a + b)(a + b)

n(n − 1) · · · 2
p0

= an

n!

(
n + b

a

) (
n − 1 + b

a

)
· · ·

(
2 + b

a

) (
1 + b

a

)
p0.

If we now write α for 1 + b/a, then we have

pn = an

n!
(n − 1 + α) (n − 2 + α) · · · (1 + α)α p0

=
(

α + n − 1

n

)
an p0. (4.14)

To identify a distribution, note that as p0 > 0, we require that
∑∞

n=1 pn < 1.
By the ratio test, we have absolute convergence if

lim
n→∞

∣∣∣∣ pn

pn−1

∣∣∣∣ < 1

and as pn = (a + b/n)pn−1, we have absolute convergence if |a| < 1, and as
we have assumed a > 0, this condition reduces to a < 1. Then

p0 + p0

∞∑
n=1

(
α + n − 1

n

)
an = 1,

and from formula (1.3) of Section 1.2.3, we know that for the N B(k, p) prob-
ability function

pk
∞∑

n=1

(
k + n − 1

n

)
qn = 1 − pk

where p + q = 1. Hence p0 = (1 − a)α , and the distribution of N is negative
binomial with parameters 1 − a, where 0 < a < 1, and α = 1 + b/a.

The final case to consider is when a + b > 0 and a < 0. As a < 0, there
must exist some positive integer κ such that

a + b

κ + 1
= 0

so that pn = 0 for n = κ + 1, κ + 2, . . . If this were not true, then as a < 0 and
b > 0, we would find that there would be a first value of n such that a + b/n
would be less than 0, generating a negative value for pn . Proceeding as in the
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third case above,

pn = an

n!

(
n + b

a

) (
n − 1 + b

a

)
· · ·

(
2 + b

a

) (
1 + b

a

)
p0

and as κ = −(1 + b/a), we can write this as

pn = an

n!
(−κ + n − 1) (−κ + n − 2) · · · (−κ + 1)(−κ)p0

= (−1)n an

n!
(κ − n + 1) (κ − n + 2) · · · (κ − 1)κ p0

= (−1)n an

n!

κ!

(κ − n)!
p0

= (−a)n

(
κ

n

)
p0.

We have assumed that a < 0, so let A = −a > 0. Then

p0 + p0

κ∑
n=1

(
κ

n

)
An = p0

κ∑
n=0

(
κ

n

)
An = 1.

To find p0 we can write A = p/(1 − p) which is equivalent to p = A/(1 +
A) = a/(a − 1), so that 0 < p < 1. Then

p0

κ∑
n=0

(
κ

n

)
pn(1 − p)−n = 1

gives p0 = (1 − p)κ , so that the distribution of N is binomial with parameters
κ and a/(a − 1).

Table 4.1 shows the values of a and b for the parameterisations of distribu-
tions in Section 1.2.

We conclude our discussion of the (a, b, 0) class by considering the prob-
ability generating function of a distribution in this class, and deriving a result

Table 4.1 Values of a and b for the Poisson, binomial and
negative binomial distributions

a b

P(λ) 0 λ
B(n, q) −q/(1 − q) (n + 1)q/(1 − q)

N B(k, p) 1 − p (1 − p)(k − 1)
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that will be applied in Section 4.5.2. Let

PN (r ) = p0 +
∞∑

n=1

rn pn.

Then

P ′
N (r ) =

∞∑
n=1

nrn−1 pn

=
∞∑

n=1

nrn−1

(
a + b

n

)
pn−1

= a
∞∑

n=1

nrn−1 pn−1 + b
∞∑

n=1

rn−1 pn−1

= a
∞∑

n=1

nrn−1 pn−1 + bPN (r ).

Using the trivial identity n = n − 1 + 1, we have

a
∞∑

n=1

nrn−1 pn−1 = a
∞∑

n=1

(n − 1) rn−1 pn−1 + a
∞∑

n=1

rn−1 pn−1

= ar
∞∑

n=2

(n − 1) rn−2 pn−1 + a PN (r )

= ar P ′
N (r ) + a PN (r ).

Hence

P ′
N (r ) = ar P ′

N (r ) + (a + b) PN (r ). (4.15)

This differential equation can be solved, but the solution is not necessary in
what follows and so we omit the details.

4.5.2 The Panjer recursion formula

The Panjer recursion formula is one of the most important results in risk theory.
Not only is it useful in the context of aggregate claims distributions, but, as we
shall see in Chapter 7, it has applications in ruin theory. The recursion formula
allows us to calculate the probability function of aggregate claims when the
counting distribution belongs to the (a, b, 0) class and when the individual
claim amount distribution is discrete with probability function { f j }∞j=0. Until
now we have tacitly assumed that individual claims follow some continuous
distribution such as lognormal or Pareto. Indeed, we have not discussed discrete
distributions as candidates to model individual claim amounts, and we defer
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a discussion of this until Section 4.7. Similarly, we simply note here that it
is useful to allow f0 > 0, even though in the context of individual claims, an
individual claim amount of zero would not constitute a claim in practice. We
shall see why this seemingly artificial condition is useful in Sections 4.7 and
7.9.1.

Since we are now assuming that individual claim amounts are distributed
on the non-negative integers, it follows that S is also distributed on the non-
negative integers. Further, as S = ∑N

i=1 Xi it follows that S = 0 if N = 0 or if
N = n and

∑n
i=1 Xi = 0. As

∑n
i=1 Xi = 0 only if each Xi = 0, it follows by

independence that

Pr

(
n∑

i=1

Xi = 0

)
= f n

0

and hence by the arguments in Section 4.2.1,

g0 = p0 +
∞∑

n=1

pn f n
0 = PN ( f0). (4.16)

From Section 4.2.2, the probability generating function of S is given by

PS(r ) = PN [PX (r )] (4.17)

and so differentiation with respect to r gives

P ′
S(r ) = P ′

N [PX (r )] P ′
X (r ). (4.18)

Applying formula (4.15) to the above identity by replacing the argument r by
PX (r ) gives

P ′
S(r ) = (

a PX (r )P ′
N [PX (r )] + (a + b)PN [PX (r )]

)
P ′

X (r )

or, using formulae (4.17) and (4.18),

P ′
S(r ) = a PX (r )P ′

S(r ) + (a + b)PS(r )P ′
X (r ). (4.19)

Now PS and PX are probability generating functions, and they are respec-
tively given by

PS(r ) =
∞∑
j=0

r j g j and PX (r ) =
∞∑

k=0

rk fk

so that

P ′
S(r ) =

∞∑
j=0

j r j−1g j and P ′
X (r ) =

∞∑
k=0

k rk−1 fk .
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Using these expressions in equation (4.19) we obtain

∞∑
j=0

j r j−1g j = a

( ∞∑
k=0

rk fk

) ( ∞∑
j=0

j r j−1g j

)

+ (a + b)

( ∞∑
j=0

r j g j

) ( ∞∑
k=0

k rk−1 fk

)

or, on multiplying throughout by r ,

∞∑
j=0

j r j g j = a

( ∞∑
k=0

rk fk

)( ∞∑
j=0

j r j g j

)
+ (a + b)

( ∞∑
j=0

r j g j

)( ∞∑
k=0

k rk fk

)
.

(4.20)
To obtain a formula for gx , x = 1, 2, 3, . . . , from equation (4.20), all that

is required is that we identify coefficients of powers of r on each side of the
equation. On the left-hand side, the coefficient of r x is xgx . In the first product of
sums on the right-hand side we can obtain terms in r x by multiplying together
the term in rk in the first sum with the term in r x−k in the second sum, for
k = 0, 1, 2, . . ., x . Hence, the coefficient of r x in the first product of sums is

a
x∑

k=0

fk(x − k)gx−k .

Similarly, the coefficient of r x in the second product of sums is

(a + b)
x∑

k=0

k fk gx−k .

Thus,

xgx = a
x∑

k=0

fk(x − k)gx−k + (a + b)
x∑

k=0

k fk gx−k

= a f0xgx + a
x∑

k=1

fk(x − k)gx−k + (a + b)
x∑

k=1

k fk gx−k

so that

(1 − a f0)xgx =
x∑

k=1

(a(x − k) + (a + b)k) fk gx−k

or

gx = 1

1 − a f0

x∑
k=1

(
a + bk

x

)
fk gx−k . (4.21)
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Formula (4.21) is the Panjer recursion formula, with starting value g0 given
by formula (4.16). It shows that gx is expressed in terms of g0, g1, . . ., gx−1,
so that calculation of the probability function is recursive. In all practical appli-
cations of this formula, a computer is required to perform calculations. However,
the advantage that the Panjer recursion formula has over formula (4.2) for gx is
that there is no need to calculate convolutions, and from a computational point
of view this is much more efficient.

Example 4.8 Let N ∼ P(2), and let f j = 0.6(0.4 j−1) for j = 1, 2, 3, . . . Cal-
culate gx for x = 0, 1, 2 and 3.

Solution 4.8 As f0 = 0, we have g0 = p0. Further, as a = 0 and b = 2,

gx = 2

x

x∑
k=1

k fk gx−k .

Thus,

g0 = e−2 = 0.1353,

g1 = 2 f1g0 = 0.1624,

g2 = f1g1 + 2 f2g0 = 0.1624,

g3 = 2
3 ( f1g2 + 2 f2g1 + 3 f3g0) = 0.1429.

In general a recursion formula for the distribution function of S does not
exist. An exception is when N has a geometric distribution with pn = pqn for
n = 0, 1, 2, . . . In this case, a = q and b = 0, so that

gx = q

1 − q f0

x∑
k=1

fk gx−k,

and for y = 1, 2, 3, . . .,

G(y) =
y∑

x=0

gx = g0 +
y∑

x=1

q

1 − q f0

x∑
k=1

fk gx−k

= g0 + q

1 − q f0

y∑
k=1

fk

y∑
x=k

gx−k

= g0 + q

1 − q f0

y∑
k=1

fk G(y − k) (4.22)

so that in this special case, the distribution function of S can also be calculated
recursively. We shall see in Chapter 7 that this is a particularly useful result.
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We can also find the moments of S recursively by using the Panjer recursion
formula. For r = 1, 2, 3, . . ., we have

E
[
Sr

] =
∞∑

x=0

xr gx

= 1

1 − a f0

∞∑
x=1

xr
x∑

k=1

(
a + bk

x

)
fk gx−k

= 1

1 − a f0

∞∑
k=1

∞∑
x=k

(
axr + bkxr−1

)
fk gx−k

= 1

1 − a f0

∞∑
k=1

fk

∞∑
t=0

(
a(t + k)r + bk(t + k)r−1

)
gt .

Using the binomial expansion,

∞∑
t=0

(t + k)r gt =
∞∑

t=0

r∑
i=0

(
r

i

)
t i kr−i gt

=
r∑

i=0

(
r

i

)
kr−i

∞∑
t=0

t i gt

=
r∑

i=0

(
r

i

)
kr−i E

[
Si

]
,

and so

E
[
Sr

]
= 1

1 − a f0

∞∑
k=1

fk

[
a

r∑
i=0

(
r

i

)
kr−i E

[
Si

] + bk
r−1∑
i=0

(
r − 1

i

)
kr−1−i E

[
Si

]]

= 1

1 − a f0

[
a

r∑
i=0

(
r

i

)
E

[
Si

] ∞∑
k=1

kr−i fk + b
r−1∑
i=0

(
r − 1

i

)
E

[
Si

] ∞∑
k=1

kr−i fk

]

= 1

1 − a f0

[
r−1∑
i=0

[
a

(
r

i

)
+ b

(
r − 1

i

)]
E

[
Si

]
E

[
Xr−i

1

] + aE
[
Sr

] ∞∑
k=1

fk

]
.

As
∑∞

k=1 fk = 1 − f0, we can rearrange the above identity to yield

E
[
Sr

] = 1

1 − a

r−1∑
i=0

[
a

(
r

i

)
+ b

(
r − 1

i

)]
E

[
Si

]
E

[
Xr−i

1

]
. (4.23)

Example 4.9 Use formula (4.23) to find the first three moments of a compound
Poisson distribution when the Poisson parameter is λ and the individual claim
amounts are distributed on the non-negative integers.
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Solution 4.9 For the P(λ) distribution, a = 0 and b = λ, so formula (4.23)
becomes

E
[
Sr

] = λ

r−1∑
i=0

(
r − 1

i

)
E

[
Si

]
E

[
Xr−i

1

]
.

Setting r = 1 we get E[S] = λE[X1], setting r = 2 we get

E[S2] = λ
(
E[X 2

1] + E[S]E[X1]
)

= λE[X 2
1] + E[S]2

so that V [S] = λE[X2
1], and setting r = 3 we get

E
[
S3

] = λ
(
E

[
X3

1

] + 2E[S]E[X2
1] + E[S2]E[X1]

)
= λE

[
X 3

1

] + 2E[S]V [S] + E[S2]E[S]

= λE
[
X 3

1

] + 3E[S]E[S2] − 2E[S]3.

We remark that these results are consistent with results in Section 4.3, noting
that the third result can be rearranged as

λE
[
X 3

1

] = E
[
S3

] − 3E[S]E[S2] + 2E[S]3

= E
[
(S − E[S])3

]
.

4.6 Extensions of the Panjer recursion formula

4.6.1 The (a, b, 1) class of distributions

A counting distribution is said to belong to the (a, b, 1) class of distributions if
its probability function {qn}∞n=0 can be calculated recursively from the formula

qn =
(

a + b

n

)
qn−1 (4.24)

for n = 2, 3, 4, . . ., where a and b are constants. This class differs from the
(a, b, 0) class because the starting value for the recursive calculation is q1,

which is assumed to be greater than 0, and the term ‘1’ in (a, b, 1) is used to
indicate the starting point for the recursion.

As the recursion formula is the same for the (a, b, 1) class as for the (a, b, 0)
class, we can construct members of the (a, b, 1) class by modifying the mass of
probability at 0 in distributions in the (a, b, 0) class, and there are two ways in
which we can do this. The first method of modification is called zero-truncation.
Let {pn}∞n=0 be a probability function in the (a, b, 0) class. Its zero-truncated
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counterpart is given by

qn = pn

1 − p0

for n = 1, 2, 3, . . . For example, the zero-truncated Poisson distribution with
parameter λ has probability function

qn = e−λ

1 − e−λ

λn

n!

for n = 1, 2, 3, . . .

The second method of modification is called zero-modification. If {pn}∞n=0

is a probability function in the (a, b, 0) class, its zero-modified counterpart is
given by q0 = α, where 0 < α < 1, and for n = 1, 2, 3, . . .,

qn = 1 − α

1 − p0
pn.

Thus, the probability p0 in the (a, b, 0) probability function is being replaced by
the probability α, and the remaining probabilities, {pn}∞n=1, are being rescaled.
For example, the zero-modified version of the geometric distribution with
probability function pn = pqn for n = 0, 1, 2, . . . is given by q0 = α and for
n = 1, 2, 3, . . .,

qn = 1 − α

1 − p
pqn = (1 − α)pqn−1.

There are four other members of the (a, b, 1) class. Two of these are the
logarithmic distribution, introduced in Exercise 1 of Chapter 1, and the extended
truncated negative binomial distribution given by

qn =
(−r

n

)
(−θ )n

(1 − θ )−r − 1

for n = 1, 2, 3, . . ., where r > −1 and 0 < θ < 1. As each of these distributions
is defined on the positive integers, we can create the other two distributions in the
(a, b, 1) class from these two distributions by creating zero-modified versions
of these distributions.

When the counting distribution belongs to the (a, b, 1) class and individual
claim amounts are distributed on the non-negative integers, the techniques of
the previous section can be used to derive a recursion formula for the probability
function for aggregate claims. Let

QN (r ) =
∞∑

n=0

rnqn .
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Then, using the arguments of Section 4.5.1,

Q′
N (r ) = [q1 − (a + b)q0] + ar Q′

N (r ) + (a + b)QN (r ).

Similarly, following the arguments in Section 4.5.2, PS(r ) = Q N [PX (r )] yields

P ′
S(r ) = [q1 − (a + b)q0] P ′

X (r ) + a PX (r )P ′
S(r ) + (a + b)PS(r )P ′

X (r ),

from which we find

gx = 1

1 − a f0

(
x∑

j=1

(
a + bj

x

)
f j gx− j + (q1 − (a + b)q0) fx

)
(4.25)

for x = 1, 2, 3, . . . The starting value for this recursion formula is

g0 =
∞∑

n=0

qn f n
0 = QN ( f0) (4.26)

when f0 > 0. When f0 = 0 and q0 > 0, the starting value is simply g0 = q0,
and when both q0 and f0 equal 0, the starting value is

g1 = Pr(N = 1) Pr(X1 = 1) = q1 f1.

Example 4.10 Let N have a logarithmic distribution with parameter θ = 0.5,
and let f j = 0.2(0.8 j ) for j = 0, 1, 2, . . . Calculate Pr(S ≤ 3).

Solution 4.10 The logarithmic probability function is

qn = −1

log 0.5

0.5n

n

for n = 1, 2, 3, . . ., so that q1 = 0.7213, and in formula (4.24), a = 0.5 and
b = −0.5. From Exercise 1 of Chapter 1, it is easy to see that

QN (r ) = log(1 − 0.5r )

log(1 − 0.5)
,

so that the starting value for the recursive calculation, calculated by formula
(4.26), is g0 = QN (0.2) = 0.1520. Applying formula (4.25), we have

gx = 10

9

(
1

2

x∑
j=1

(
1 − j

x

)
f j gx− j + q1 fx

)
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giving

g1 = 10

9
q1 f1 = 0.1282,

g2 = 10

9

(
1

4
f1g1 + q1 f2

)
= 0.1083,

g3 = 10

9

(
1

2

(
2

3
f1g2 + 1

3
f2g1

)
+ q1 f3

)
= 0.0915,

and hence Pr(S ≤ 3) = 0.4801. (Rounded values are shown in this solution.)

4.6.2 Other classes of distributions

A distribution is said to belong to Schröter’s class of distributions if its proba-
bility function {pn}∞n=0 can be calculated recursively from the formula

pn =
(

a + b

n

)
pn−1 + c

n
pn−2 (4.27)

for n = 1, 2, 3, . . ., where a, b and c are constants and p−1 is defined to be zero.
When the counting distribution belongs to Schröter’s class and individual

claim amounts are distributed on the non-negative integers, we can again apply
the techniques of the previous section to derive a recursion formula for the
probability function of aggregate claims. By inserting formula (4.27) into

PN (r ) =
∞∑

n=0

rn pn

we find after some algebra that

P ′
N (r ) = ar P ′

N (r ) + (a + b + cr )PN (r ), (4.28)

and, proceeding as in previous derivations, differentiation of the identity
PS(r ) = PN [PX (r )] leads to

P ′
S(r ) = a PX (r )P ′

S(r ) + (a + b + cPX (r )) PS(r )P ′
X (r ). (4.29)

In previous derivations of recursion formulae, this is the stage at which we
have written probability generating functions and their derivatives in summation
form. Instead of doing this immediately, we first note that if we define a random
variable Y by Y = X1 + X2, then PY (r ) = PX (r )2 and consequently

P ′
Y (r ) = 2PX (r )P ′

X (r ).
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Further, Pr(Y = j) = Pr(X1 + X2 = j) = f 2∗
j for j = 0, 1, 2, . . ., so that

P ′
Y (r ) =

∞∑
j=0

jr j−1 f 2∗
j .

We can now write equation (4.29) as

P ′
S(r ) = a PX (r )P ′

S(r ) + (a + b)PS(r )P ′
X (r ) + c

2
PS(r )P ′

Y (r )

or, in summation form,

∞∑
j=0

j r j−1g j = a

( ∞∑
k=0

rk fk

) ( ∞∑
j=0

j r j−1g j

)

+ (a + b)

( ∞∑
j=0

r j g j

) ( ∞∑
k=0

k rk−1 fk

)

+ c

2

( ∞∑
j=0

r j g j

) ( ∞∑
k=0

k rk−1 f 2∗
k

)
.

If we multiply this equation by r then equate coefficients of powers of r we
obtain

gx = 1

1 − a f0

x∑
j=1

[(
a + bj

x

)
f j + cj

2x
f 2∗

j

]
gx− j (4.30)

for x = 1, 2, 3, . . ., and the starting value for this recursion formula is g0 =
PN ( f0).

Formula (4.30) has one important drawback as a recursion formula, namely
that in order to apply it to calculate gx , we must first calculate { f 2∗

j }x
j=1. Thus,

the need to calculate convolutions to find gx is not eliminated as it is in the case
when the claim number distribution belongs to one of the (a, b, 0) and (a, b, 1)
classes.

It is beyond our scope to discuss ranges for the parameters a, b and c in
formula (4.27). However, we note that if N3 = N1 + N2 where N1 and N2 are
independent, the distribution of N1 is in the (a, b, 0) class and the distribution
of N2 is Poisson, then the distribution of N3 is in Schröter’s class. This can
be shown by noting that for a random variable N1 in the (a, b, 0) class with
parameters a = α and b = β, equation (4.15) gives

P ′
N1

(r )

PN1 (r )
= α + β

1 − αr
,
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and note that

P ′
N1

(r )

PN1 (r )
= d

dr
log PN1 (r ).

Similarly, for N2 ∼ P(λ),

P ′
N2

(r )

PN2 (r )
= λ = d

dr
log PN2 (r ).

Then for N3 = N1 + N2,

PN3 (r ) = PN1 (r )PN2 (r )

gives

log PN3 (r ) = log PN1 (r ) + log PN2 (r ),

so that

P ′
N3

(r )

PN3 (r )
= P ′

N1
(r )

PN1 (r )
+ P ′

N2
(r )

PN2 (r )

= α + β

1 − αr
+ λ

= α + β + λ − λαr

1 − αr
.

Now note that for a random variable N whose distribution belongs to
Schröter’s class, equation (4.28) can be written as

P ′
N (r )

PN (r )
= a + b + cr

1 − ar
.

Hence, the distribution of N3 belongs to Schröter’s class, and the parameters
are a = α, b = β + λ and c = −λα.

Example 4.11 Aggregate claims from Risk 1, denoted S1, have a compound
Poisson distribution with Poisson parameter λ = 2, and aggregate claims from
Risk 2, denoted S2, have a compound negative binomial distribution with neg-
ative binomial parameters k = 2 and p = 0.5. For each risk, individual claims
have probability function f where

f1 = 0.4, f2 = 0.35, f3 = 0.25.

Let S = S1 + S2. Calculate Pr(S = x) for x = 0, 1, 2, 3 by two methods,
assuming S1 and S2 are independent.

Solution 4.11 As S = S1 + S2, it follows that the probability function of S can
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Table 4.2 Probability functions for S1, S2 and S

x Pr(S1 = x) Pr(S2 = x) Pr(S = x)

0 0.1353 0.2500 0.0338
1 0.1083 0.1000 0.0406
2 0.1380 0.1175 0.0612
3 0.1550 0.1230 0.0819

be calculated as

Pr(S = x) =
x∑

y=0

Pr(S1 = y) Pr(S2 = x − y) (4.31)

for x = 0, 1, 2, . . . The probability functions of S1 and S2 can each be calculated
by the Panjer recursion formula, and values are shown in Table 4.2, as is the
probability function of S, calculated by formula (4.31).

The second approach is to note that as S represents aggregate claims from
Risks 1 and 2, the distribution of the number of claims from these risks belongs
to Schröter’s class. To apply formula (4.30) we need

f 2∗
1 = 0, f 2∗

2 = f 2
1 = 0.16, f 2∗

3 = 2 f1 f2 = 0.28.

We also require a = 0.5, b = 2.5 and c = −1. The starting value for the recur-
sive calculation is g0 = 0.25e−2 = 0.0338, and by formula (4.30),

g1 = 3 f1g0 = 0.0406,

g2 = 7

4
f1g1 +

(
3 f2 − 1

2
f 2∗
2

)
g0 = 0.0612,

g3 = 4

3
f1g2 +

(
13

6
f2 − 1

3
f 2∗
2

)
g1 +

(
3 f3 − 1

2
f 2∗
3

)
g0 = 0.0819.

In the above solution, we have exploited the fact that we knew that the
counting variable when the risks were combined was the sum of Poisson and
negative binomial random variables. If, instead, all we had known was the
values of a, b and c, we could have obtained g0 by finding p0 numerically. It
follows from the recursive nature of formula (4.27) that each value pn is some
multiple of p0. We can use this fact to set the starting value in formula (4.27) to
1 (a convenient, but arbitrary, choice), and using the values of a = 0.5, b = 2.5
and c = −1 from Example 4.11, a simple computer program gives

10 000∑
n=0

pn = 29.5562.
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This tells us that setting p0 = 29.5562−1 = 0.0338 in formula (4.27) would
give

∑10 000
n=0 pn = 1. Care must be exercised in applying such an approach, and

the obvious test to apply is to increase the upper limit of summation.
Schröter’s class of counting distributions belongs to a larger class of distri-

butions known as the Rk class. A distribution is said to belong to this class if
its probability function {pn}∞n=0 can be calculated recursively from the formula

pn =
k∑

i=1

(
ai + bi

n

)
pn−i

where k is a positive integer, {ai }k
i=1 and {bi }k

i=1 are constants, and pn is defined
to be zero for n < 0. Thus, Schröter’s class forms a subset of the R2 class. As
the principles involved in dealing with theRk class are not different from those
involved in dealing with Schröter’s class, they will not be discussed further
here, but some details are given in Exercise 12.

4.7 The application of recursion formulae

4.7.1 Discretisation methods

In order to develop recursion formulae for the probability function of S we have
assumed that individual claim amounts are distributed on the non-negative in-
tegers. In practice, however, continuous distributions such as Pareto or lognor-
mal are used to model individual claim amounts. In order to apply a recursion
formula in such a situation we must replace a continuous distribution by an
appropriate discrete distribution on the non-negative integers, and we refer to
this process as discretising a distribution.

There are a number of ways in which a continuous distribution, F , with
F(0) = 0, might be discretised. One approach is through matching probabilities.
A discrete distribution with probability function {h j }∞j=1 can be created by
setting

h j = F( j) − F( j − 1). (4.32)

The rationale behind this approximation is that for x = 0, 1, 2, . . . values of
distribution functions are equal, that is

H (x) =
x∑

j=1

h j = F(x).

Also, for non-integer x > 0, H (x) < F(x) so that H is a lower bound for F .
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In the same vein, we can create a discrete distribution H̃ that is an upper
bound for F by defining the probability function {h̃ j }∞j=0 by h̃0 = F(1) and

h̃ j = F( j + 1) − F( j)

for j = 1, 2, 3, . . ., so that

H̃ (x) =
x∑

j=0

h̃ j = F(x + 1)

for x = 0, 1, 2, . . . Thus, H (x) ≤ F(x) ≤ H̃ (x) for all x ≥ 0, and an applica-
tion of this result is given in Chapter 7.

An alternative approach is to match moments of the discrete and continuous
distributions. For example, we can define a probability function {ĥ j }∞j=0, with

distribution function Ĥ, by

Ĥ (x) =
x∑

j=0

ĥ j =
∫ x+1

x
F(y) dy (4.33)

for x = 0, 1, 2, . . . Then, if X ∼ F and Y ∼ Ĥ ,

E [Y ] =
∞∑

x=0

(
1 − Ĥ (x)

)

=
∞∑

x=0

∫ x+1

x
(1 − F(y)) dy

=
∫ ∞

0
(1 − F(y)) dy

= E[X ].

Thus, the discretisation procedure is mean preserving.
Note that although we are discretising on the integers, this technique also

applies to discretising on 0, z, 2z, . . . for any positive z. To see this, suppose that
X has an exponential distribution with mean 100, and let Y be a random variable
whose distribution is a discretised version of this exponential distribution on
0, 1, 2, . . . If we scale both X and Y by dividing by 100, then X/100 has an
exponential distribution with mean 1, while Y/100 has a discrete distribution
on 0, 1/100, 2/100, . . . with Pr(Y/100 = j/100) = Pr(Y = j). Thus, we can
think of the quality of a discretisation process improving as the fraction of
the mean on which the distribution is discretised decreases. Figures 4.1 and 4.2
show discretised versions of the exponential distribution with mean 1, calculated
by formula (4.32), as well as the true exponential distribution. In Fig. 4.1,
discretisation is on 1/10ths of the mean, whereas in Fig. 4.2 it is on 1/20ths
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Figure 4.1 Exponential distribution with mean 1 discretised on 1/10ths.
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Figure 4.2 Exponential distribution with mean 1 discretised on 1/20ths.

of the mean. The better approximation is clearly in Fig. 4.2, and if we were to plot
the discretisation on 1/100ths of the mean, it would be difficult to distinguish
the discretised distribution from the continuous one.

Turning now to the calculation of the aggregate claims distribution, sup-
pose that we want to calculate Pr(S ≤ x) when the individual claim amount
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distribution is continuous. In particular, suppose that S has a compound Pois-
son distribution with Poisson parameter λ and individual claim amounts are
distributed as Pa(α, α − 1) so that m1 = 1. Then for any positive constant k,
kS has a compound Poisson distribution with Poisson parameter λ and indi-
vidual claim amounts are distributed as Pa(α, k(α − 1)) (for reasons given in
Section 4.4.1). Now define a random variable Sd to have a compound Poisson
distribution with Poisson parameter λ and an individual claim amount distribu-
tion that is a discretised version of the Pa(α, k(α − 1)) distribution. Then Sd

is a discrete random variable whose probability function can be calculated by
the Panjer recursion formula, and the distribution function of S can be found
approximately since

Pr(S ≤ x) = Pr(kS ≤ kx) ≈ Pr(Sd ≤ kx).

The quality of this approximation depends on the value of the scaling
factor k. In general, the larger the value of k, the better the approximation should
be. In the examples in Section 4.8, the mean individual claim amount is 1 and
a scaling factor of k = 20 has been used, so that discretisation is effectively on
1/20ths of the mean individual claim amount. This level of scaling should be
appropriate for most practical purposes. It is important to appreciate that a larger
scaling factor, say k = 100, would significantly increase computer run time.

Table 4.3 shows some approximations to Pr(S ≤ x) when S has a compound
Poisson distribution with Poisson parameter 20 and a Pa(2, 1) individual claim

Table 4.3 Approximate values of Pr(S ≤ x)

x Pr(S ≤ x), k = 20 Pr(S ≤ x), k = 50 Pr(S ≤ x), k = 100

5 0.0091 0.0090 0.0090
10 0.1322 0.1315 0.1313
15 0.3869 0.3861 0.3858
20 0.6258 0.6252 0.6250
25 0.7838 0.7834 0.7833
30 0.8741 0.8739 0.8739
35 0.9237 0.9236 0.9236
40 0.9513 0.9512 0.9512
45 0.9672 0.9671 0.9671
50 0.9768 0.9767 0.9767
55 0.9828 0.9828 0.9828
60 0.9869 0.9869 0.9869
65 0.9897 0.9897 0.9897
70 0.9917 0.9917 0.9917
75 0.9932 0.9932 0.9932
80 0.9943 0.9943 0.9943
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amount distribution. This Pareto distribution has been discretised using formula
(4.33). Three scaling factors have been used, namely 20, 50 and 100. We can see
from this table that an increase in the scaling factor does not have a great effect
on the approximation, and this is particularly the case for larger probabilities.

4.7.2 Numerical issues

We conclude our discussion of recursive methods with two warnings on com-
putational issues. First, not all recursion schemes are stable. This means that a
recursion formula may produce sensible answers initially, but will ultimately
produce values that are clearly wrong. For example, when the claim number
distribution is binomial, the Panjer recursion formula is unstable. Instability
manifests itself in this case by producing values for the probability function of
S that are outside the interval [0, 1]. The Panjer recursion formula is, however,
stable when the claim number distribution is either Poisson or negative bino-
mial. Instability does not mean that a recursion scheme is not useful. It simply
means that we should be careful in analysing the output from our calculations.

A second issue is numerical underflow. This occurs when the initial value in a
recursive calculation is so small that a computer stores it as zero. For example, if
we were computing a compound Poisson probability function through the Panjer
recursion formula and the Poisson parameter was so large that our computer
stored g0 as zero, then the recursion formula would give g1 = 0, then g2 = 0, and
so on. One solution to the problem is to set g0 to an arbitrary value such as 1, then
proceed with the recursive calculation. Required values can be obtained from
these values by appropriate scaling, for example by multiplying each calculated
value n times by g1/n

0 . It may also be desirable to perform scaling at intermediate
points in the calculation to prevent the possibility of numerical overflow.

4.8 Approximate calculation of aggregate
claims distributions

In previous sections we have seen that exact calculation of aggregate claims
distributions is possible in many situations. However, a problem with recur-
sive methods is that they can be computationally intensive, even with modern
computing power. Therefore, approximate calculation can still be very useful,
particularly if it can be done quickly. We now describe two methods of approx-
imating the aggregate claims distribution, each of which can be implemented
easily with basic software such as a spreadsheet.
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4.8.1 The normal approximation

The idea under the normal approximation is simple: if we know the mean and
variance of S, we approximate the distribution of S by a normal distribution
with the same mean and variance. A justification for this approach is that S is the
sum of a (random) number of independent and identically distributed random
variables. As the number of variables being summed increases, we would expect
the distribution of this sum to tend to a normal distribution by the Central Limit
Theorem. The problem with this argument is that we are dealing with a random
sum, but if the expected number of claims is large, it is not unreasonable to
expect that a normal distribution would give a reasonable approximation to the
true distribution of S.

Example 4.12 The variable S has a compound Poisson distribution with Pois-
son parameter λ and individual claim amounts are lognormally distributed
with mean 1 and variance 1.5. Using a normal approximation, find x such that
Pr(S ≤ x) = 0.95 (a) when λ = 10, and (b) when λ = 100.

Solution 4.12 As E[S] = λ and V [S] = 2.5λ, the approximate distribution of
S is N (λ, 2.5λ). Thus

Pr(S ≤ x) ≈ Pr

(
Z ≤ x − λ√

2.5λ

)

where Z ∼ N (0, 1), and we know from tables of the standard normal distribu-
tion that Pr(Z ≤ 1.645) = 0.95. Thus

x = λ + 1.645
√

2.5λ

so that when λ = 10, x = 18.23, and when λ = 100, x = 126.0.

Figure 4.3 shows the exact and approximating densities from Example 4.12
when λ = 10, and Fig. 4.4 shows the situation when λ = 100. In Fig. 4.3, we
see that the approximation is not particularly good. There are two features
to note from this figure. First, the true distribution of S is positively skewed,
whereas the normal distribution is symmetric. Second, under the true distri-
bution, Pr(S < 0) = 0, but this is clearly not the case under the normal ap-
proximation. The situation is different in Fig. 4.4. The true distribution of S
is still positively skewed, but the coefficient of skewness is now much smaller
(0.395 compared with 1.25 in the case λ = 10). Also, under the normal ap-
proximation, the approximate value for Pr(S < 0) is now 0 (to many decimal
places). A common feature of Figs 4.3 and 4.4 is that the normal approxima-
tion understates tail probabilities, that is quantities of the form Pr(S > x), and
these are typically the probabilities of most interest to insurers. For example,
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Figure 4.3 Normal approximation, λ = 10.
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Figure 4.4 Normal approximation, λ = 100.

using the Panjer recursion formula and a discretisation based on 20ths of the
mean individual claim amount, the answers to the questions in Example 4.12
are x = 19.15 when λ = 10, and x = 127.5 when λ = 100. In each case the
normal approximation has understated the 95th percentile of the distribution.

In summary, the advantages of the normal approximation are that we need
little information to apply it (just the mean and variance of S), it is easy to apply,



86 The collective risk model

and it should give reasonable approximations if the expected number of claims
is large. Its main disadvantages are that it can lead to non-zero approximations
to Pr(S < 0), the approximating distribution is symmetric whereas the true
distribution is usually skewed, and the approximation tends to understate tail
probabilities.

4.8.2 The translated gamma approximation

A failing of the normal approximation is that as it is based on the first two
moments of S, the approximation cannot capture the skewness of the true dis-
tribution. The translated gamma approximation overcomes this failing by using
the first three moments of S. The idea under the translated gamma approxi-
mation is that the distribution of S is approximated by that of Y + k, where
Y ∼ γ (α, β) and k is a constant. The parameters α, β and k of the approxi-
mating distribution are found by matching mean, variance and coefficient of
skewness of the two distributions. There is no strong theoretical justification for
the translated gamma approximation. However, as the approximating distribu-
tion has the same first three moments as S, we would expect this approximation
to perform better than the normal approximation.

In Section 1.3.1 we saw that the coefficient of skewness of a γ (α, β) random
variable is 2/

√
α, and translating any variable by k units does not change the

coefficient of skewness. Thus, the parameters α, β and k are found from

Sk[S] = 2√
α

, (4.34)

V [S] = α

β2 , (4.35)

E[S] = α

β
+ k. (4.36)

Example 4.13 The variable S has the same compound Poisson distribution as
in Example 4.12. Using a translated gamma approximation, find x such that
Pr(S ≤ x) = 0.95 (a) when λ = 10, and (b) when λ = 100.

Solution 4.13 The first step is to calculate the parameters of the approximating
distribution, for which we need the third moment of the lognormal distribution.
As

m1 = 1 = exp{µ + σ 2/2}
and

m2 = 2.5 = exp{2µ + 2σ 2}
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we find that µ = −0.4581 and σ = 0.9572, so that

m3 = exp{3µ + 9σ 2/2} = 15.625.

By equation (4.34),

λm3

(λm2)3/2 = 2√
α

which gives

α = 4λm3
2

m2
3

.

Next, equation (4.35) gives

λm2 = α

β2

so that

β = 2m2

m3
,

and finally equation (4.36) gives

λm1 = α

β
+ k

so that

k = λm1 − α/β = λ

(
m1 − 2m2

2

m3

)
.

Thus, when λ = 10, α = 2.560, β = 0.3200 and k = 2.000. Setting S = Y + k
where Y ∼ γ (α, β), we have

Pr(S ≤ x) ≈ Pr(Y ≤ x − k)

and using software – for example, most spreadsheets have a supplied function
to find the inverse of a gamma distribution – we find that

Pr(Y ≤ 17.59) = 0.95

so that the required value of x is 19.59.

When λ = 100, we get α = 25.60, β = 0.3200 and k = 20.00, and in this
case, when Y ∼ (α, β),

Pr(Y ≤ 107.7) = 0.95

and so the required value of x is 127.7.
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Figure 4.5 Translated gamma approximation, λ = 10.
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Figure 4.6 Translated gamma approximation, λ = 100.

Figure 4.5 shows the exact and approximating densities from Example 4.13
when λ = 10, and Fig. 4.6 shows the situation when λ = 100. Note that in
Fig. 4.5 the approximating density has the same shape as the exact density
and that the approximating density is above the exact density in the right-hand
tail, in contrast to the normal approximation. In Fig. 4.6 the approximation
is excellent and it is difficult to distinguish between the two densities in this
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figure. As noted in the discussion following Example 4.12, the answers to the
questions in Example 4.13 are x = 19.15 when λ = 10, and x = 127.5 when
λ = 100. Thus, the approximations in Example 4.13 are very good.

The major advantage that the translated gamma approximation has over the
normal approximation is that it takes account of the skewness of the distribution
of S. However, we need one more piece of information in order to apply this
approximation. In Example 4.13 the value of k is positive in each scenario, but
this is not the case in general. Thus, the translated gamma approximation can
give an approximation to Pr(S < 0) that is non-zero, even though this probability
is zero. Nevertheless, the translated gamma approximation is a simple and easily
implemented approach that can produce excellent approximations.

4.9 Notes and references

Further details on most of the topics covered in this chapter can be found in
the comprehensive textbook by Klugman et al. (1998). Original references
are Panjer (1981) for the Panjer recursion formula, Sundt and Jewell (1981)
for the (a, b, 1) class, Schröter (1991) for Schröter’s class, and Sundt (1992)
for the Rk class. Discretisation methods are discussed by Panjer and Lutek
(1983), while the discretisation given by formula (4.33) is due to De Vylder
and Goovaerts (1988). Numerical aspects of recursive calculations are discussed
by Panjer and Willmot (1986) and Panjer and Wang (1993). These papers deal
with underflow/overflow issues and stability of recursion formulae respectively.

4.10 Exercises

1. Aggregate claims, S, from a risk have a compound negative binomial
distribution with negative binomial parameters k = 80 and p = 0.4.
Individual claim amounts are lognormally distributed with mean 1 and
variance 2. Calculate E[S] and V [S].

2. Aggregate claims from a risk have a compound Poisson distribution with
Poisson parameter 100 and individual claim amounts are distributed as
γ (2, 0.001). Calculate the premium for this risk using the exponential
premium principle with parameter 0.0001.

3. Aggregate claims from a risk have a compound Poisson distribution with
Poisson parameter 200 and individual claim amounts are exponentially
distributed with mean 100. Calculate the premium for this risk using the
Esscher premium principle with parameter 0.001.
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4. Aggregate claims from Risk 1, denoted S1, have a compound Poisson
distribution with Poisson parameter λ1 = 20 and individual claim
amounts are distributed as the random variable X where

Pr(X = 10) = 0.25, Pr(X = 20) = 0.5, Pr(X = 30) = 0.25.

Aggregate claims from Risk 2, denoted S2, have a compound Poisson
distribution with Poisson parameter λ2 = 30 and individual claim
amounts are distributed as the random variable Y where

Pr(Y = 20) = 0.3, Pr(Y = 30) = 0.4, Pr(Y = 40) = 0.3.

Find the distribution of S1 + S2, assuming the risks are independent.
5. Using the notation of Section 4.4.2, show that when the distribution of N

is binomial, the distribution of NR is also binomial.
6. Aggregate claims from a risk have a compound negative binomial

distribution, with negative binomial parameters k = 100 and p = 0.5.
The individual claim amount distribution is Pareto with parameters α = 3
and λ = 400. The insurer of this risk effects excess of loss reinsurance
with retention level 400 with Reinsurance Company A.
(a) Show that the distribution of the number of (non-zero) claims for

Reinsurance Company A is negative binomial with parameters 100
and 8/9.

(b) Show that the distribution of individual claim payments for
Reinsurance Company A is Pareto with parameters 3 and 800.

(c) Suppose that Reinsurance Company A effects a proportional
reinsurance treaty with Reinsurance Company B, retaining 70% of
each claim. Let SA and SB respectively denote aggregate claims for
Reinsurance Companies A and B. Calculate Cov(SA, SB).

7. Aggregate claims from a risk have a compound Poisson distribution with
Poisson parameter 10, and the individual claim amount distribution is
exponential with mean 100. An insurer charges a premium of 1100 to
cover this risk, and arranges excess of loss reinsurance with retention
level M . The random variable SR denotes aggregate claims paid by the
reinsurer, and the reinsurance premium is E [SR] + 0.001V [SR] .

(a) Find the reinsurance premium as a function of M .
(b) Let g(M) denote the insurer’s net profit for the year as a function of

M . Show that E [g(M)] is an increasing function of M . For which
values of M is E [g(M)] positive?

(c) Show that V [g(M)] is an increasing function of M .
8. Let X ∼ F , and let Y ∼ Ĥ , where Ĥ is the discrete distribution on the

non-negative integers created from F by formula (4.33). Let M be a
positive integer. Show that E [min(Y, M)] = E [min(X, M)] .
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9. Aggregate claims, S, from a risk have a compound binomial distribution
where the binomial parameters are n = 10 and q = 0.6. Individual claim
amounts have probability function

f1 = 0.4, f2 = 0.35, f3 = 0.25.

Calculate Pr(S ≤ 5).
10. Aggregate claims from a risk have a compound negative binomial

distribution. The distribution of the number of claims is NB(10, 0.5) and
individual claim amounts have probability function

fx = 0.2(0.8)x−1

for x = 1, 2, 3, . . . The insurer effects excess of loss reinsurance with
retention level 4. Find the probability that the reinsurer’s aggregate claim
amount is less than 3.

11. The distribution of the number of claims, N , from a risk is zero-truncated
geometric, with probability function pn = α pn−1 for n = 2, 3, 4, . . . , and
individual claim amounts, X , have probability function { fx}∞x=0. Let
{gx }∞x=0 denote the probability function of aggregate claims, S.
(a) Show that

P ′
N (r ) = 1 − α + αr P ′

N (r ) + αPN (r ).

(b) Starting from PS(r ) = PN [PX (r )], show that

P ′
S(r ) = (1 − α) P ′

X (r ) + α
(
PX (r )P ′

S(r ) + PS(r )P ′
X (r )

)
.

(c) Find a recursion formula for gx , x = 1, 2, 3, . . . , and show that
g0 = (1 − α) f0/(1 − α f0).

(d) Use your answer to (c) to show that

E
[
Sr

] = E
[
Xr

] + α

1 − α

r−1∑
j=0

(
r

j

)
E

[
S j

]
E

[
Xr− j

]
.

12. The probability function {pn}∞n=0 of the number of claims, N , from a risk
satisfies the recursion formula

pn =
k∑

i=1

(ai + bi

n
)pn−i (4.37)

where pn = 0 for n < 0, and {ai }k
i=1 and {bi }k

i=1 are constants. Individual
claim amounts {Xi }∞i=1 have probability function { fx}∞x=0, and {gx }∞x=0

denotes the probability function of aggregate claims, S.
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(a) Show that

P ′
N (r ) =

k∑
i=1

[
air

i P ′
N (r ) + (iai + bi )r

i−1 PN (r )
]

.

(b) Let Yi = ∑i
j=1 X j for i = 1, 2, . . . , k. Find an expression for P ′

Yi
(r )

in terms of PX1 (r ) and P ′
X1

(r ).
(c) Show that

P ′
S(r ) =

k∑
i=1

ai PYi (r )P ′
S(r ) +

k∑
i=1

(
ai + bi

i

)
P ′

Yi
(r )PS(r ).

(d) Show that for x = 1, 2, 3, . . .

gx = 1

1 − ∑k
i=1 ai f i

0

x∑
j=1

gx− j

k∑
i=1

(
ai + bi j

i x

)
f i∗

j (4.38)

and that the starting value for this recursion formula is g0 = PN ( f0).
(e) What is the main problem associated with the use of formula (4.38)?

13. Aggregate claims, S, from a risk have a compound Poisson distribution
with Poisson parameter 50 and individual claim amounts are distributed
according to the mixed exponential distribution

F(x) = 1 − 0.4e−0.01x − 0.6e−0.02x

for x ≥ 0. Calculate approximate values of Pr(S ≤ 4500) using (a) a
normal approximation, and (b) a translated gamma approximation.

14. An insurer offers travel insurance policies. The probability that a policy
produces a claim is q and the amount of a claim is an exponential random
variable with mean 1 000. The premium for such a policy is 100. This
premium has been calculated on the following assumptions:
(a) the insurer sells 10 000 policies,
(b) the distribution of the total claim amount from these policies can be

approximated by a normal distribution, and
(c) the probability that the insurer makes a profit from this business is

0.95.
Find the value of q.
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The individual risk model

5.1 Introduction

In the previous chapter we discussed the collective risk model, where we consid-
ered the number of claims arising from a portfolio, rather than from individual
policies within that portfolio. An alternative approach is to consider the aggre-
gate claim amount from a portfolio as the sum of the claim amounts from the
individual policies that comprise the portfolio. This approach gives rise to the
individual risk model which we discuss in this chapter. In the next section we
specify the model assumptions, and in subsequent sections we consider dif-
ferent approaches to evaluating the aggregate claims distribution. A numerical
illustration of these methods is given in Section 5.6.

5.2 The model

Consider a portfolio of n independent policies. We assume that the number of
claims arising under the i th policy is either zero, with probability 1 − qi , or one,
with probability qi , for i = 1, 2, . . . , n. As in the previous chapter, we denote
the aggregate claim amount by S, and write

S =
n∑

i=1

Si

where Si denotes the amount paid out in claims under the i th policy. It is
important to realise that the amount paid out under an individual policy can be
zero (and often is in practice). We note that

E [S] =
n∑

i=1

E [Si ] and V [S] =
n∑

i=1

V [Si ] , (5.1)

where the second identity follows by independence.

93
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We now introduce some further notation. Suppose that a claim occurs under
the i th policy. This claim amount is modelled as a random variable with dis-
tribution function Fi such that Fi (0) = 0, mean µi and variance σ 2

i . Note that
Si has a compound binomial distribution since the distribution of the number
of claims under the i th policy is B(1, qi ), and so it immediately follows from
formulae (4.5) and (4.6) in Section 4.2.2 that

E [Si ] = qiµi and V [Si ] = qiσ
2
i + qi (1 − qi )µ

2
i . (5.2)

The assumption that the number of claims from a policy is either zero or one
is inappropriate for most forms of general insurance. However, it represents
perfectly the situation in life insurance. For the remainder of this chapter it
is convenient to use the terminology of life insurance, so that qi is the mor-
tality rate of the holder of policy i . Further, the assumption of independence
implies that there are n distinct individuals in the portfolio. We assume in the
next two sections that the benefit under life insurance is fixed rather than ran-
dom, so that µi represents the sum assured under the i th policy, and σ 2

i = 0
for all i . We concentrate on developing formulae which can be used to cal-
culate the aggregate claims distribution within this life insurance framework,
which is the most important application for the individual risk model. It is
worth noting, however, that the ideas presented in the next section can easily
be extended to the case of random, rather than fixed, benefits. We consider
the case σ 2

i > 0 in Section 5.5 where we approximate the aggregate claims
distribution.

Before considering the methods available to us, we remark that the distri-
bution of S may be found by convoluting the distributions of {Si }n

i=1. In most
practical applications n is large, and so this approach is not particularly attrac-
tive. Hence we seek alternative methods which involve fewer computations.

5.3 De Pril’s recursion formula

De Pril’s recursion formula provides a means of calculating the aggregate claims
distribution for the individual risk model. In this section we derive the recursion
formula and describe a variation of it. However, we defer application of these
formulae until Section 5.6 where we compare the numerical results of different
approaches to computing the aggregate claims distribution.

It is convenient to subdivide the portfolio according to mortality rate and
sum assured. We assume that sums assured in the portfolio are integers, namely
1, 2, . . . , I , and that a policyholder is subject to one of J different mortality
rates. Let ni j denote the number of policyholders with mortality rate q j and
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sum assured i , for j = 1, 2, . . . , J and i = 1, 2, . . . , I , and let gx = Pr(S = x)
for x = 0, 1, 2, . . .

The probability generating function of the claim amount from a policyholder
with mortality rate q j and sum assured i is

Pi j (r ) = 1 − q j + q jr
i .

Hence, by independence of the policyholders, the probability generating func-
tion of S is

PS(r ) =
I∏

i=1

J∏
j=1

(
1 − q j + q jr

i
)ni j =

∞∑
x=0

r x gx

so that

log PS(r ) =
I∑

i=1

J∑
j=1

ni j log(1 − q j + q jr
i ). (5.3)

The idea now is to establish an identity in terms of the probability generating
function PS and its derivative, and to express this identity in terms of power
series in r . Then by using the technique of equating coefficients of powers of
r , we can establish a formula for gx . Differentiating equation (5.3) we find that

d

dr
log PS(r ) = P ′

S(r )

PS(r )
=

I∑
i=1

J∑
j=1

ni j
q j ir i−1

1 − q j + q jr i

so that

r P ′
S(r ) = PS(r )

I∑
i=1

J∑
j=1

ni j i
q jr i

1 − q j + q jr i

= PS(r )
I∑

i=1

J∑
j=1

ni j i
q j r i

1 − q j

(
1 + q jr i

1 − q j

)−1

= PS(r )
I∑

i=1

J∑
j=1

ni j i
q j r i

1 − q j

∞∑
k=1

(−1)k−1

(
q jr i

1 − q j

)k−1

where the final step holds provided that∣∣∣∣ q jr i

1 − q j

∣∣∣∣ < 1

for all i and j. In most applications, values of q j are small, so that this condition
is usually satisfied in practice. Hence, we have

r P ′
S(r ) = PS(r )

I∑
i=1

J∑
j=1

ni j i
∞∑

k=1

(−1)k−1

(
q j

1 − q j

)k

r ik . (5.4)
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We now define

h(i, k) =
{

i(−1)k−1 ∑J
j=1 ni j

(
q j/(1 − q j )

)k
for i = 1, 2, . . . , I

0 otherwise

so that equation (5.4) becomes

r P ′
S(r ) = PS(r )

I∑
i=1

∞∑
k=1

r ikh(i, k). (5.5)

If we now write PS(r ) and P ′
S(r ) in summation form in equation (5.5), we get

∞∑
x=1

xr x gx =
∞∑

x=0

r x gx

I∑
i=1

∞∑
k=1

r ikh(i, k). (5.6)

For x = 1, 2, 3, . . . the coefficient of r x on the left-hand side of equation (5.6)
is xgx . The coefficient of r x on the right-hand side is found by summing
gx−ikh(i, k) over all i and k such that 1 ≤ ik ≤ x . Letting [x/ i] denote the
integer part of x/ i we find that

xgx =
x∑

i=1

[x/ i]∑
k=1

gx−ikh(i, k),

and hence

gx = 1

x

x∑
i=1

[x/ i]∑
k=1

gx−ikh(i, k)

for x = 1, 2, 3, . . . Finally, as h(i, k) is defined to be zero for i > I , our recur-
sion formula for gx , known as De Pril’s recursion formula, is

gx = 1

x

min(x,I )∑
i=1

[x/ i]∑
k=1

gx−ikh(i, k)

for x = 1, 2, 3, . . . , and the starting value for the recursion formula is

g0 =
I∏

i=1

J∏
j=1

(
1 − q j

)ni j
,

since S = 0 only if no claim occurs under each policy.
Values of q j are small in practice, and this means that for large values

of k, the terms which contribute to h(i, k) are very small, and h(i, k) it-
self is usually small. For large portfolios, it can be computationally intensive
to compute the exact probability function of S through De Pril’s recursion
formula. One way of reducing computing time is to discard small values of
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h(i, k), and we can do this in the following way. Let K be a positive integer,
and define

gK
0 = g0 (5.7)

and

gK
x = 1

x

min(x,I )∑
i=1

min(K ,[x/ i])∑
k=1

gK
x−ikh(i, k) (5.8)

for x = 1, 2, 3, . . . In practice, a value such as K = 4 is usually sufficient to
give a very good approximation to the probability function of S. In fact, when
each qi is less than 1/2,

m∗∑
x=0

∣∣gx − gK
x

∣∣ ≤ exp{δ(K )} − 1

where

m∗ =
I∑

i=1

J∑
j=1

ini j

is the maximum aggregate claim amount and

δ(K ) = 1

K + 1

I∑
i=1

J∑
j=1

ni j
1 − q j

1 − 2q j

(
q j

1 − q j

)K+1

. (5.9)

A proof of this result can be found in the reference given in Section 5.7.

5.4 Kornya’s method

Kornya’s method provides us with a means of approximating the distribution of
S. We use ideas similar to those in the previous section to develop this method,
and our set-up is identical to that in the previous section. It is now convenient to
introduce the notation p j = 1 − q j , so that the probability generating function
of S can be written as

PS(r ) =
I∏

i=1

J∏
j=1

(
p j + q jr

i
)ni j

.

We now write

p j + q j r
i =

(
1 + q j

p j
r i

) (
1 + q j

p j

)−1
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using the fact that p j + q j = 1. Hence, we have

PS(r ) =
I∏

i=1

J∏
j=1

(
1 + q j

p j
r i

)ni j
(

1 + q j

p j

)−ni j

.

For the remainder of this section we assume that q j < 1/2 for all j . Then for
|q jr i/p j | < 1,

log PS(r ) =
I∑

i=1

J∑
j=1

ni j

[
log

(
1 + q j

p j
r i

)
− log

(
1 + q j

p j

)]

=
I∑

i=1

J∑
j=1

ni j

∞∑
k=1

(−1)k+1

k

[(
q j

p j
r i

)k

−
(

q j

p j

)k
]

=
∞∑

k=1

(−1)k+1

k

I∑
i=1

J∑
j=1

ni j

[(
q j

p j
r i

)k

−
(

q j

p j

)k
]

.

Now define QS = log PS , and define

Sk(r ) =
I∑

i=1

J∑
j=1

ni j

[(
q j

p j
r i

)k

−
(

q j

p j

)k
]

so that

QS(r ) =
∞∑

k=1

(−1)k+1

k
Sk(r ).

Next, define

QK (r ) =
K∑

k=1

(−1)k+1

k
Sk(r )

so that QK contains the first K terms of QS .
The idea of Kornya’s method is as follows. We know that

PS(r ) = exp {QS(r )} =
∞∑

x=0

r x gx .

Let us define

PK (r ) = exp {QK (r )} =
∞∑

x=0

r x g(K )
x . (5.10)

The objective is to find values of g(K )
x and to use

∑y
x=0

∣∣g(K )
x

∣∣ as an approxima-
tion to

∑y
x=0 gx . The reason for using absolute values is that our construction

does not guarantee that each g(K )
x is positive. To find g(K )

x values, let us write



5.4 Kornya’s method 99

QK (r ) as

QK (r ) =
∞∑

x=0

r x b(K )
x

=
K∑

k=1

(−1)k+1

k

I∑
i=1

J∑
j=1

ni j

[(
q j

p j
r i

)k

−
(

q j

p j

)k
]

. (5.11)

Then we can use equation (5.11) to find b(K )
x for x = 0, 1, 2, . . . by equating

coefficients of powers of r .
Equating coefficients of r 0 immediately gives

b(K )
0 =

K∑
k=1

(−1)k

k

I∑
i=1

J∑
j=1

ni j

(
q j

p j

)k

.

To find the coefficient of r x for x = 1, 2, 3, . . . in the second line of equation
(5.11) we must consider how the product ik can equal x , as we must sum

(−1)k+1

k

J∑
j=1

ni j

(
q j

p j

)k

over certain values of k. The constraints on k are as follows.

(i) It is clear that k must be a divisor of x .
(ii) Recall that i represents the sum assured, and that I is the largest sum

assured. Then, if ki = x and i ≤ I , we have x ≤ k I or k ≥ x/I . This
means that the lower limit of summation will be the least integer greater
than or equal to x/I that is also a divisor of x . For example, if x = 6 and
I = 4, then the only possible values for k would be 2, 3 and 6.

(iii) The upper limit of summation will be either x or K , whichever is smaller.
Note that when the upper limit is K , there is a contribution at K only if
K is a divisor of x . For example, in the illustration in condition (ii)
above, if K = 4, then the upper limit of summation is 3, since 4 is not a
divisor of 6.

Hence, we find that

b(K )
x =

min(K ,x)∑
k={x/I },k|x

(−1)k+1

k

J∑
j=1

nx/k, j

(
q j

p j

)k

(5.12)

where k|x means that k is a divisor of x , and {x/I } denotes the least inte-
ger greater than or equal to x/I . Of course, when x ≤ I , the lower limit of
summation is 1.
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Having established formulae from which we can calculate b(K )
x for x =

0, 1, 2, . . . we can use these values to calculate values of g(K )
x for x =

0, 1, 2, . . . from the following recursion formula:

g(K )
x = 1

x

x∑
j=1

jb(K )
j g(K )

x− j (5.13)

for x = 1, 2, 3, . . . , with g(K )
0 = exp

{
b(K )

0

}
. To see this, note from equation

(5.10) that

P ′
K (r ) = Q ′

K (r )PK (r )

or, in summation form,

∞∑
x=1

xr x−1g(K )
x =

∞∑
x=1

xr x−1b(K )
x

∞∑
y=0

r y g(K )
y .

Equation (5.13) then follows by equating coefficients of powers of r , and the
starting value for the recursion follows from

PK (0) = g(K )
0 = exp {QK (0)} = exp

{
b(K )

0

}
.

Finally, we note that when x > I K , the lower limit of summation in equation
(5.12) is greater than the upper limit, and so b(K )

x = 0 for x > I K . Hence, for
x = 1, 2, 3, . . . we calculate g(K )

x as

g(K )
x = 1

x

min(x,I K )∑
j=1

jb(K )
j g(K )

x− j .

Kornya’s method gives an approximation to the distribution of S. The larger
the value of K , the better we would expect this approximation to be, and in
practice a value of K = 4 appears to give good results. Under the assumption
that q j < 1/3 for all j , it can be shown that

sup
y

∣∣∣∣∣
y∑

x=0

gx −
y∑

x=0

∣∣g(K )
x

∣∣∣∣∣∣∣ ≤ exp{σ (K )} − 1

where

σ (K ) = 8

3 (K + 1)

I∑
i=1

J∑
j=1

ni j

(
q j

p j

)K+1

. (5.14)

A proof of this result can be found in the reference given Section 5.7.
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Kornya’s method is an efficient computational tool which is easy to apply.
As with other methods, we illustrate it numerically in Section 5.6.

5.5 Compound Poisson approximation

In this section we illustrate how the aggregate claims distribution can be ap-
proximated by a compound Poisson distribution, and we give bounds for the
error of this approximation. In presenting ideas, we revert to the general model
described in Section 5.2. Thus, we drop the assumption of the previous two
sections that the amount of a claim is fixed. Hence, we are no longer able to
classify policyholders by mortality rate and sum assured as we did in those
sections.

Let Gi be the distribution function of the amount paid out in claims under the
i th policy. As noted in Section 5.2, Gi is a (very simple) compound binomial
distribution. Assuming that all claim amounts are non-negative, and again letting
pi = 1 − qi we have

Gi (x) = pi + qi Fi (x)

for x ≥ 0 and for i = 1, 2, . . . , n, and G is given by

G(x) = G1 ∗ G2 ∗ · · · ∗ Gn(x) = n∗
i=1

Gi (x).

There is no simple representation for the convolution of compound binomial
distributions. However, as shown in Section 4.3, there is one for the convo-
lution of compound Poisson distributions. This motivates a simple idea. For
i = 1, 2, . . . , n, we can approximate Gi by Pi , where Pi is a compound Pois-
son distribution, and approximate G by P where

P(x) = n∗
i=1

Pi (x).

Then P is a compound Poisson distribution.
We set

Pi (x) =
∞∑

n=0

e−λi
λn

i

n!
Fn∗

i (x)

for x ≥ 0 and for i = 1, 2, . . . , n. Note that Gi and Pi are both compound
distributions – they have different claim number distributions, but the same
individual claim amount distribution.
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Table 5.1 Comparison of methods of choosing λi

λi = qi exp{−λi } = pi

qi λi Pr(Ni > 1) λi Pr(Ni > 1)

0.1 0.1 0.0047 0.1054 0.0052
0.01 0.01 5 × 10−5 0.0101 5 × 10−5

0.001 0.001 5 × 10−7 0.0010 5 × 10−7

0.0001 0.0001 5 × 10−9 0.0001 5 × 10−9

There are two ways in which we can choose the parameter λi . First, we
can set λi = qi so that the expected number of claims is the same under the
exact binomial counting distribution and the approximating Poisson distribu-
tion. Second, we can set exp{−λi } = pi so that the probability of no claims
is the same under each counting distribution. In practice it matters little which
method we choose if {qi }n

i=1 are small. Table 5.1 shows values of λi under
each method for different values of qi , as well as values of Pr(Ni > 1) where
Ni ∼ P(λi ). The message from Table 5.1 is very clear. If the value of qi is
small, then the two methods give virtually the same value of λi . Further, each
method produces a very good approximation to the B(1, qi ) distribution when
qi is small. The probability of more than one claim under each approximating
Poisson distribution is non-zero, but is sufficiently close to zero not to cause
concern.

The main result of this section is as follows:
n∑

i=1

(
pi − e−λi

)− ≤ G(x) − P(x) ≤
n∑

i=1

(
pi − e−λi + (

qi − λi e
−λi

)+)
(5.15)

for all x , where z+ = max(0, z) and z− = min(0, z). To prove this result we
need the following two auxiliary results.

(i) Let F , G and H be distribution functions, and let a and b be constants
such that

a ≤ F(x) − G(x) ≤ b

for all x . Then

a ≤ F ∗ H (x) − G ∗ H (x) ≤ b (5.16)

for all x .
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(ii) Let {Fi }n
i=1 and {Gi }n

i=1 be distribution functions satisfying

ai ≤ Fi (x) − Gi (x) ≤ bi

for all x and for i = 1, 2, . . . , n. Then
n∑

i=1

ai ≤ n∗
i=1

Fi (x) − n∗
i=1

Gi (x) ≤
n∑

i=1

bi . (5.17)

To prove equation (5.16), note that

F ∗ H (x) =
∫ ∞

−∞
F(x − y) d H (y)

and so

F ∗ H (x) − G ∗ H (x) =
∫ ∞

−∞
[F(x − y) − G(x − y)] d H (y).

The bounds immediately follow since a ≤ F(x − y) − G(x − y) ≤ b.
The proof of equation (5.17) is by induction. By definition, equation (5.17)

holds for n = 1. Now assume that it holds for n = k − 1, so that

k−1∑
i=1

ai ≤ k−1∗
i=1

Fi (x) − k−1∗
i=1

Gi (x) ≤
k−1∑
i=1

bi . (5.18)

As the convolutions in equation (5.18) are just distribution functions, we can
apply the result in equation (5.16) to equation (5.18) giving

k−1∑
i=1

ai ≤
(

k−1∗
i=1

Fi

)
∗ Fk(x) −

(
k−1∗
i=1

Gi

)
∗ Fk(x) ≤

k−1∑
i=1

bi . (5.19)

Also

ak ≤ Fk(x) − Gk (x) ≤ bk ,

and applying the result in equation (5.16) to this inequality gives

ak ≤ Fk ∗
(

k−1∗
i=1

Gi

)
(x) − Gk ∗

(
k−1∗
i=1

Gi

)
(x) ≤ bk . (5.20)

By adding equations (5.19) and (5.20) we obtain equation (5.17).
We are now in a position to prove equation (5.15). Recall the definitions of

G and P:

G(x) = n∗
i=1

Gi (x) and P(x) = n∗
i=1

Pi (x).

If equation (5.15) holds for n = 1, then by equation (5.17) we know that equation
(5.15) holds for any value of n. Hence it is sufficient to prove equation (5.15)
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for n = 1. For x ≥ 0 we have

Gi (x) = pi + qi Fi (x)

and

Pi (x) =
∞∑

n=0

e−λi
λn

i

n!
Fn∗

i (x).

Hence

Gi (x) − Pi (x) = pi + qi Fi (x) −
∞∑

n=0

e−λi
λn

i

n!
Fn∗

i (x)

= (pi − e−λi ) + (qi − λi e
−λi )Fi (x) −

∞∑
n=2

e−λi
λn

i

n!
Fn∗

i (x)

≤ (pi − e−λi ) + (qi − λi e
−λi )Fi (x)

≤ (pi − e−λi ) + (qi − λi e
−λi )+.

Note that the final step follows since either qi − λi e−λi < 0, in which case
(qi − λi e−λi )Fi (x) < 0 = (qi − λi e−λi )+, or qi − λi e−λi ≥ 0, in which case

(qi − λi e
−λi )Fi (x) = (qi − λi e

−λi )+Fi (x) ≤ (qi − λi e
−λi )+.

To prove the lower bound, we make use of the fact that Fi ≥ Fn∗
i for n =

2, 3, 4, . . . Then

Gi (x) − Pi (x) = pi + qi Fi (x) −
∞∑

n=0

e−λi
λn

i

n!
Fn∗

i (x)

≥ pi + qi Fi (x) − e−λi −
∞∑

n=1

e−λi
λn

i

n!
Fi (x)

= (pi − e−λi ) + (qi − (1 − e−λi ))Fi (x)

= (pi − e−λi ) + (e−λi − pi )Fi (x)

≥ (pi − e−λi ) + (e−λi − pi )
−.

To make the final step, we note that either e−λi − pi ≥ 0, in which case (e−λi −
pi )− = 0, or e−λi − pi < 0, in which case

(e−λi − pi )Fi (x) = (e−λi − pi )
− Fi (x) ≥ (e−λi − pi )

−.

Finally, since z + (−z)− = z−, we have

Gi (x) − Pi (x) ≥ (pi − e−λi )−.

Thus, we have proved equation (5.15) for x ≥ 0. Since we have assumed that
Fi (x) = 0 for x < 0, we know that Gi (x) − Pi (x) = 0 for x < 0. Thus, for
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x < 0 the bounds are of no practical interest. It is nevertheless true that equation
(5.15) holds for x < 0.

5.6 Numerical illustration

Table 5.2 shows the number of policyholders, the death benefit and the mortality
rate at each age for a hypothetical portfolio of life insurance policies. This is a
fairly straightforward portfolio in the sense that for each possible death benefit,
there is only one mortality rate. For this portfolio, formulae (5.1) and (5.2) give
E[S] = 107.03 and V [S] = 1073.16.

Table 5.3 shows exact and approximate values of Pr(S ≤ x), calculated ac-
cording to the methods described in previous sections. The legend for this table
is as follows:

Table 5.2 Mortality rates and sums assured

Death Mortality Number
Age benefit rate, ×103 of policyholders

45 15 1.467 600
46 14 2.064 600
47 12 2.660 400
48 11 3.003 400
49 10 3.386 400
50 8 3.813 400
51 6 4.290 400
52 4 4.821 400
53 2 5.410 400
54 1 6.065 400

Table 5.3 Exact and approximate values of Pr(S ≤ x)

x DP DPA K2 K3 CP1 CP2 N

25 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0061
50 0.0298 0.0298 0.0298 0.0298 0.0299 0.0296 0.0408
75 0.1690 0.1690 0.1691 0.1690 0.1694 0.1681 0.1641

100 0.4437 0.4437 0.4437 0.4437 0.4439 0.4419 0.4150
125 0.7262 0.7261 0.7262 0.7262 0.7260 0.7243 0.7083
150 0.9015 0.9014 0.9015 0.9015 0.9012 0.9003 0.9052
175 0.9736 0.9735 0.9736 0.9736 0.9734 0.9731 0.9810
200 0.9946 0.9945 0.9946 0.9946 0.9945 0.9945 0.9977
225 0.9991 0.9990 0.9991 0.9991 0.9991 0.9991 0.9998
250 0.9999 0.9998 0.9999 0.9999 0.9999 0.9999 1.0000
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1. DP denotes the exact value, calculated by De Pril’s recursion formula;
2. DPA denotes the approximation based on De Pril’s recursion given by

formulae (5.7) and (5.8) with K = 2;
3. K2 denotes the approximation given by Kornya’s method with parameter

K = 2;
4. K3 denotes the approximation given by Kornya’s method with parameter

K = 3;
5. CP1 denotes the compound Poisson approximation when the Poisson

parameter for each policy is the mortality rate;
6. CP2 denotes the compound Poisson approximation when the Poisson

parameter for each policy is − log(1 − q), where q is the policyholder’s
mortality rate;

7. N denotes the normal approximation, where the approximating normal
distribution has mean 107.03 and variance 1073.16. This is a natural
approximation to apply when the number of policyholders is large, and its
justification is the Central Limit Theorem.

We can see from Table 5.3 that the approximations in the columns DPA,
K2 and K3 are all very good, while the compound Poisson approximations
are poorer, but still good. The normal approximation is the poorest of all the
approximations. However, Fig. 5.1, which shows the exact probability func-
tion, suggests that as a simple approximation, a normal distribution might be
reasonable.

0
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Figure 5.1 Probability function of aggregate claims.
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Table 5.4 Values of h(i, k)

i h(i, 1) h(i, 2) h(i, 3) h(i, 4)

1 2.441 −0.0149 9.088 × 10−5 −5.546 × 10−7

6 10.34 −0.0446 1.919 × 10−4 −8.270 × 10−7

10 13.59 −0.0462 1.569 × 10−4 −5.330 × 10−7

14 17.37 −0.0359 7.432 × 10−5 −1.537 × 10−7

In terms of computing time required, all approximations can be calculated
almost instantaneously, while the exact calculation is much slower. For the
approximations based on De Pril’s method and Kornya’s method, the value
of K is small, but the error in each approximation is also small. In the case
of the approximation based on De Pril’s method, formula (5.9) gives δ(2) =
0.9934 × 10−4 and hence

m∗∑
x=0

∣∣gx − gK
x

∣∣ ≤ exp{δ(K )} − 1 = 0.9934 × 10−4

where m∗ = 39000. Similarly, for Kornya’s method with K = 2, formula (5.14)
gives σ (2) = 0.000 264 and hence

sup
y

∣∣∣∣∣
y∑

x=0

gx −
y∑

x=0

∣∣g(K )
x

∣∣∣∣∣∣∣ ≤ 0.000 264.

As an illustration of the point made in Section 5.3 about values of h(i, k)
being small for large values of k, Table 5.4 shows values of h(i, k) for selected
values of i and for k = 1, 2, 3, 4. We can see in this table that for each value of
i , the values of h(i, k) decrease in absolute value as k increases.

For the compound Poisson approximations, from equation (5.15) we find
that the difference between the true distribution function and the approx-
imation given by CP1 lies in the interval (−0.0318, 0.0318), while the
difference under approximation CP2 lies in the interval (0, 0.0319). We note
from Table 5.3 that the differences between the exact values and the compound
Poisson approximations lie comfortably within these intervals. We also note
that a consequence of the choice of Poisson parameters in approximation CP2
is that the approximating distribution function always takes values less than the
true distribution function.

We conclude by remarking that in practice sums assured in a portfolio can
vary considerably, and it may be practical to round sums assured, perhaps to
the nearest $100. In such circumstances an ‘exact’ calculation would be both
unnecessary and inappropriate.
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5.7 Notes and references

De Pril (1986) proposed the recursion formula which bears his name, and
he discussed error bounds for both his formula and Kornya’s method in De
Pril (1988). In De Pril (1989) he extended his recursion formula to the case
when the claim amounts are random variables, rather than fixed amounts – see
Exercise 3 for an illustration of this. Kornya’s method is described in detail
in Kornya (1983). The bounds in Section 5.5, and extensions of them, were
derived by De Pril and Dhaene (1992). A practical overview of the different
methods presented in this chapter is given by Kuon et al. (1987). Table 5.2 is
based on Dickson and Waters (1999) who discuss a multi-period version of De
Pril’s recursion formula.

5.8 Exercises

1. The table below shows data for a life insurance portfolio in which the lives
are independent with respect to mortality.

Mortality rate Sum assured Number of lives

0.001 1 100
0.002 1 300
0.002 2 200

(a) Calculate the mean and variance of aggregate claims from this
portfolio.

(b) From first principles, calculate the probability that the aggregate claim
amount from this portfolio is 2.

2. A group life insurance policy provides a death benefit on the death within
one year of members of a national university superannuation scheme. For
the purposes of insurance, members are classified as either Academic or
General, and members are assumed to be independent with respect to
mortality. The table below shows the number of members, the death benefit
and the mortality rate in each category at age 45.

Category Number Death benefit Mortality rate

Academic 225 60 0.95q
General 300 45 q

(a) Find expressions in terms of q for the mean and variance of aggregate
claims from these lives in a year.
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(b) The aggregate claims distribution for this policy can be approximated
by a compound Poisson distribution. Under the assumption that the
number of claims by each individual has a Poisson distribution whose
mean is that individual’s mortality rate:
(i) fully specify the approximating compound Poisson distribution;

(ii) find expressions for the mean and variance of this compound
Poisson distribution in terms of q, and

(iii) explain why the expression for variance in (ii) exceeds that in part
(a).

3. Consider a portfolio of n insurance policies. For i = 1, 2, . . . , n, let Si

denote the amount of claims paid under policy i and let Pr(Si = 0) = pi

and Pr(Si = x) = qi hx for x = 1, 2, 3, . . . , where 0 < pi < 1,
pi + qi = 1, qi < 1/2 and {hx}∞x=1 is a probability function.

Define the probability generating functions

B(r ) =
∞∑

x=1

r x hx

and

C(r, n) =
∞∑

x=1

r x hn∗
x = B(r )n.

Now define {gx}∞x=0 to be the probability function of S = ∑n
i=1 Si , and let

A(r ) = E
[
r S

]
.

(a) Show that

d

dr
A(r ) = A(r )

n∑
i=1

∞∑
k=1

(−1)k−1

(
qi

pi

)k 1

k

d

dr
C(r, k)

provided that ∣∣∣∣ qi

pi
B(r )

∣∣∣∣ < 1.

(b) Define

fx (i) =
∞∑

k=1

(−1)k−1

k

(
qi

pi

)k

hk∗
x

and

φx =
n∑

i=1

fx (i).
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By equating coefficients of powers of r in the expression in part (a),
show that

gx = 1

x

x∑
i=1

iφi gx−i

for x = 1, 2, 3, . . . , and write down an expression for g0.
(c) Show that g0 can also be written as

g0 = exp

(
−

n∑
i=1

∞∑
k=1

(−1)k−1

k

(
qi

pi

)k
)

.

(d) The mth order approximation to gx is g(m)
x where

g(m)
x = 1

x

x∑
i=1

iφ(m)
i g(m)

x−i ,

for x = 1, 2, 3, . . . ,

φ(m)
x =

n∑
i=1

f (m)
x (i)

and

f (m)
x (i) =

m∑
k=1

(−1)k−1

k

(
qi

pi

)k

hk∗
x .

The mth order approximation to g0 is

g(m)
0 = exp

(
−

n∑
i=1

m∑
k=1

(−1)k−1

k

(
qi

pi

)k
)

.

Deduce that the first order approximation is a compound Poisson
distribution.

4. In a life insurance portfolio the sums assured are 1, 2, . . . , I , and for a
given sum assured a policyholder is subject to one of J mortality rates. Let
ni j denote the number of policyholders with sum assured i and mortality
rate q j , j = 1, 2, . . . , J , and let p j = 1 − q j . Claims from policies are
assumed to be independent of each other. Let S denote the aggregate claim
amount in one year from this portfolio, let gk = Pr(S = k) for
k = 0, 1, 2, . . . , and let PS(r ) = E[r S].
(a) Show that

log PS(r ) = log g0 +
∞∑

k=1

(−1)k+1

k

I∑
i=1

J∑
j=1

ni j

(
q j r i

p j

)k

.
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(b) Define

Sk(r ) =
I∑

i=1

J∑
j=1

ni j

(
q jr i

p j

)k

and

QK (r ) =
K∑

k=1

(−1)k+1

k
Sk(r ) =

∞∑
x=1

b(K )
x r x

where K ≥ 1. Find expressions for b(2)
x when x is even, and when x is

odd. State the values of x for which these expressions are non-zero.
5. Write computer programs to verify the values given in Table 5.3.
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Introduction to ruin theory

6.1 Introduction

Ruin theory is concerned with the level of an insurer’s surplus for a portfolio of
insurance policies. In Chapter 4 we considered the aggregate amount of claims
paid out in a single time period. We now consider the evolution of an insurance
fund over time, taking account of the times at which claims occur, as well as their
amounts. To make our study mathematically tractable, we simplify a real life
insurance operation by assuming that the insurer starts with some non-negative
amount of money, collects premiums and pays claims as they occur. Our model
of an insurance surplus process is thus deemed to have three components: initial
surplus (or surplus at time zero), premiums received and claims paid. For the
model discussed in this chapter, if the insurer’s surplus falls to zero or below,
we say that ruin occurs.

The aim of this chapter is to provide an introduction to the ideas of ruin
theory, in particular probabilistic arguments. We use a discrete time model to
introduce ideas that we apply in the next two chapters where we consider a
continuous time model. Indeed, we will meet analogues of results given in this
chapter in these next two chapters. We start in Section 6.2 by describing our
model, then in Section 6.3 we derive a general equation for the probability of
ruin in an infinite time horizon, and consider situations in which it is possible
to obtain an explicit solution for this probability. We then consider the prob-
ability of ruin in a finite time horizon in Section 6.4, while in Section 6.5 we
prove Lundberg’s inequality, which is one of the most famous results in risk
theory.
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6.2 A discrete time risk model

Throughout this chapter we consider a discrete time model for an insurer’s
surplus. The insurer’s surplus at time n, n = 1, 2, 3, . . . , is denoted Ud (n) and
is defined by

Ud (n) = u + n −
n∑

i=1

Zi

for n = 1, 2, 3, . . . , where� u = Ud (0) is the insurer’s initial surplus, or surplus at time 0;� Zi denotes the insurer’s aggregate claim amount in the i th time interval, and
{Zi }∞i=1 is a sequence of independent and identically distributed random
variables, each distributed on the non-negative integers, with E[Z1] < 1,
probability function {hk}∞k=0 and distribution function H ; and� the insurer’s premium income per unit time is 1, so that n is the total
premium income up to time n.

The process {Ud (n)}∞n=0 is called a surplus process, with the subscript d
being used throughout this chapter to indicate that we are considering a discrete
time surplus process. For the remainder of this chapter we assume that u is a
non-negative integer so that the surplus process is always at an integer value
(since the premium income per unit time is 1 and claim amounts are integer
valued).

For this surplus process, we say that ultimate ruin occurs if the surplus ever
falls to 0 or below. Formally, we define the improper random variable Td,u as

Td,u = min{n ≥ 1: Ud (n) ≤ 0}
with Td,u = ∞ if Ud (n) > 0 for n = 1, 2, 3,. . . The probability of ultimate
ruin from initial surplus u, which we denote by ψd (u), is defined by

ψd (u) = Pr(Td,u < ∞)

= Pr

(
u + n −

n∑
i=1

Zi ≤ 0 for some n, n = 1, 2, 3, . . .

)
.

Note that under this definition, ruin does not occur at time 0 if u = 0.
Before proceeding to a mathematical analysis, let us first consider some fea-

tures of our model. A premium income of 1 per unit time may appear rather
unrealistic, although in practice we can always choose a time interval such
that the insurer’s premium income per unit time would be 1 (in some mone-
tary unit, for example $10 000). We will see in Chapter 7 that this is simply
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a very convenient modelling assumption. The assumption that {Zi }∞i=1 is a se-
quence of independent and identically distributed random variables implies
that the distribution of the insurer’s aggregate claims does not change over
time, and in practice this is a realistic assumption over a short period. The
assumption that E[Z1] < 1 means that in each unit of time, the insurer’s pre-
mium income exceeds the insurer’s expected aggregate claim amount, so that
we can write 1 = (1 + θ )E[Z1] where θ is the insurer’s premium loading fac-
tor. In Chapter 4 we saw that appropriate use of scaling allowed us to apply
a model in which individual claims were distributed on the integers, and as
we will see in Chapter 7, scaling can similarly be applied to this discrete time
model.

6.3 The probability of ultimate ruin

In this section we derive a general equation which can be used to calculate ψd .
We also find an explicit solution for ψd (0) and show that explicit solutions for
ψd can be found for certain forms of H .

Consider the aggregate claim amount, Z1, in the first time period. If
Z1 > u then Ud (1) ≤ 0 and so ruin occurs at time 1. However, if Z1 = j ,
j = 0, 1, 2, . . ., u, then the surplus at time 1 is u + 1 − j and the probability
of ruin from this new surplus level is ψd (u + 1 − j). This latter point follows
because {Zi }∞i=1 is a sequence of independent and identically distributed ran-
dom variables. Consequently, if the surplus level at time 1 is Ud (1) > 0, then
the probability of ultimate ruin from this level is

Pr

(
Ud (1) + n − 1 −

n∑
i=2

Zi ≤ 0 for some n, n = 2, 3, 4, . . .

)

which is just ψd (Ud (1)).
Hence, we have

ψd (u) =
u∑

j=0

h jψd (u + 1 − j) + 1 − H (u),

for u = 0, 1, 2, . . ., or, equivalently,

ψd (u) =
u+1∑
r=1

hu+1−rψd (r ) + 1 − H (u), (6.1)
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from which it follows that for w = 0, 1, 2, . . .

w∑
u=0

ψd (u) =
w∑

u=0

u+1∑
r=1

hu+1−rψd (r ) +
w∑

u=0

[1 − H (u)]

=
w+1∑
r=1

ψd (r )
w∑

u=r−1

hu+1−r +
w∑

u=0

[1 − H (u)]

=
w+1∑
r=1

ψd (r )H (w + 1 − r ) +
w∑

u=0

[1 − H (u)]

=
w∑

r=1

ψd (r )H (w + 1 − r ) + ψd (w + 1)h0 +
w∑

u=0

[1 − H (u)].

Hence

ψd (w + 1)h0 = ψd (0) +
w∑

r=1

ψd (r )[1 − H (w + 1 − r )] −
w∑

r=0

[1 − H (r )].

(6.2)

(Note that in equation (6.2) we have applied the convention that
∑b

j=a = 0 if
b < a to the case w = 0, and we use this convention throughout.)

It also follows from equation (6.1) that

ψd (w + 1)h0 = ψd (w) −
w∑

r=1

hw+1−rψd (r ) − [1 − H (w)] (6.3)

and so, equating the right-hand sides of equations (6.2) and (6.3), we have

ψd (w) = ψd (0) +
w∑

r=1

ψd (r )[1 − H (w − r )] −
w−1∑
r=0

[1 − H (r )] (6.4)

for w = 0, 1, 2, . . .

We now show thatψd (0) = E[Z1]. To do this, let gd (y) denote the probability
that ruin occurs from initial surplus 0 and that the deficit at the time of ruin is y,
y = 0, 1, 2, . . . (Note that a ‘deficit’ of 0 is just a consequence of our definition
of ψd . We refer to this as a deficit even though the insurer would not actually
be in deficit under the usual meaning of the word.) To apply the function gd it
is important to note that it has an alternative interpretation. For y = 1, 2, 3, . . .

and u > 0, gd(y) is the probability that the surplus falls below its initial level at
some time in the future and that the resulting surplus when this occurs is u − y,
with a similar interpretation applying when y = 0.
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We can use the function gd to write down an expression for ψd using a
probabilistic argument. If ruin occurs from initial surplus u, then either

(i) on the first occasion that the surplus falls below (or to) its initial level, the
resulting surplus level is u − y, y = 0, 1, 2, . . ., u − 1, and ruin
subsequently occurs from this surplus level, or

(ii) on the first occasion that the surplus falls below its initial level, the
resulting surplus is 0 or less, so that ruin occurs.

Hence, for u = 1, 2, 3, . . . ,

ψd (u) =
u−1∑
y=0

gd (y)ψd (u − y) +
∞∑

y=u

gd (y). (6.5)

Also

ψd (0) =
∞∑

y=0

gd (y)

as the insurer’s deficit at ruin must be one of 0, 1, 2, . . . if ruin occurs. Hence
equation (6.5) can be written as

ψd (u) =
u−1∑
y=0

gd (y)ψd (u − y) + ψd (0) −
u−1∑
y=0

gd (y)

= ψd (0) +
u∑

y=1

gd (u − y)ψd (y) −
u−1∑
y=0

gd (y). (6.6)

By equations (6.4) and (6.6) it follows that

gd (y) = 1 − H (y)

for y = 0, 1, 2, . . . , and so

ψd (0) =
∞∑

y=0

[1 − H (y)] = E[Z1].

Hence, we can write equation (6.5) as

ψd (u) =
u−1∑
y=0

[1 − H (y)]ψd (u − y) +
∞∑

y=u

[1 − H (y)]. (6.7)

Example 6.1 Let Pr(Z1 = 0) = p = 1 − Pr(Z1 = 2) where 0.5 < p < 1, so
that in each time period the insurer’s surplus either increases by 1 or decreases
by 1. Find an expression for ψd (u) for u = 1, 2, 3, . . .
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Solution 6.1 Setting q = 1 − p we have E[Z1] = 2q, giving ψd (0) = 2q.
Next, as H (0) = H (1) = p, and H (k) = 1 for k ≥ 2, equation (6.7) gives

ψd (1) = qψd (1) + q

or, equivalently,

ψd (1) = q/p.

Similarly, for u = 2, 3, 4, . . . equation (6.7) gives

ψd (u) = qψd (u) + qψd (u − 1)

so that

ψd (u) = (q/p)ψd (u − 1)

= (q/p)u .

Example 6.2 Let Pr(Z1 = 0) = p and

Pr(Z1 = k) = q(1 − α) αk−1

for k = 1, 2, 3, . . . , where 0 < p < 1, p + q = 1 and α is such that E[Z1] < 1.
Find an expression for ψd (u) for u = 0, 1, 2, . . .

Solution 6.2 First, note that for k = 0, 1, 2, . . .

H (k) = 1 − qαk

so that

E[Z1] =
∞∑

k=0

[1 − H (k)] = q

1 − α

and hence ψd(0) = q/(1 − α). If we now insert for H in equation (6.7) we get

ψd (u) =
u−1∑
y=0

qαyψd (u − y) +
∞∑

y=u

qαy

or, equivalently,

ψd (u) =
u∑

y=1

qαu−yψd (y) +
∞∑

y=u

qαy . (6.8)

Increasing the initial surplus by 1, we have

ψd (u + 1) =
u+1∑
y=1

qαu+1−yψd (y) +
∞∑

y=u+1

qαy . (6.9)
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Multiplication of equation (6.8) by α gives

αψd (u) =
u∑

y=1

qαu+1−yψd (y) +
∞∑

y=u+1

qαy, (6.10)

and subtraction of equation (6.10) from equation (6.9) gives

ψd (u + 1) − αψd (u) = qψd (u + 1)

or

ψd (u + 1) = α

p
ψd (u)

for u = 0, 1, 2, . . . Hence

ψd (u) = ψd (0)

(
α

p

)u

= q

1 − α

(
α

p

)u

.

6.4 The probability of ruin in finite time

For an integer value of t , we define the finite time ruin probability as

ψd (u, t) = Pr(Td,u ≤ t).

Thus, ψd (u, t) gives the probability that ruin occurs from initial surplus u at or
before the fixed point in time t .

Explicit solutions for ψd (u, t) are generally not available, but recursive cal-
culation of this probability is possible. Consider first the case t = 1. Ruin occurs
at time 1 if Z1 > u. Hence

ψd (u, 1) =
∞∑

k=u+1

hk = 1 − H (u). (6.11)

For any integer value of t greater than 1 we have

ψd (u, t) = ψd (u, 1) +
u∑

k=0

hkψd (u + 1 − k, t − 1). (6.12)

This identity follows by considering what happens in the first time period. If
ruin occurs at or before time t , then either

(i) Z1 > u so that ruin occurs at time 1, or
(ii) Z1 = k, k = 0, 1, 2, . . ., u, and ruin occurs in the next t − 1 time periods,

from surplus level u + 1 − k at time 1.

Provided we can calculate the probability function {hk}∞k=0 we can use these
formulae to calculate finite time ruin probabilities recursively. Suppose we
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wish to calculate ψd (u, t) for fixed integer values of u and t . The first step is
to calculate ψd (ω, 1) for ω = 1, 2, 3, . . ., u + t − 1 from equation (6.11). We
next calculate ψd (ω, 2) for ω = 1, 2, 3, . . ., u + t − 2 from equation (6.12). We
continue in this manner, using equation (6.12) to calculate values of ψd (ω, τ )
for ω = 1, 2, 3, . . ., u + t − τ , having previously calculated values of ψd (ω,

τ − 1) for ω = 1, 2, 3, . . ., u + t − τ + 1, until we calculate values of
ψd (ω, t − 1) for ω = 1, 2, 3, . . ., u + 1. This final set of values can then by
applied to calculate ψd (u, t).

If the values of u and t are large, it can be time consuming (even for a
computer) to apply the above procedure to calculate ψd (u, t). Since many of
the probabilities used in the calculations will be very small, we can reduce the
number of calculations involved by ignoring small probabilities. For a (small)
fixed value ε > 0, define k1 to be the least integer such that H (k1) ≥ 1 − ε, and
define

hε
k =

{
hk for k = 0, 1, 2, . . . , k1

0 for k = k1 + 1, k1 + 2, . . .

and define

ψε
d (u, 1) =

{
1 − H (u) for u = 0, 1, 2, . . . , k1

0 for u = k1 + 1, k1 + 2, . . .
.

Thus, we are setting values less than ε to be zero.
For t = 2, 3, 4, . . . , let

ψε
d (u, t) = ψε

d (u, 1) +
u∑

k=0

hε
kψ

ε
d (u + 1 − k, t − 1) (6.13)

for u = 0, 1, 2, . . . , kt , where kt is the integer such that

ψd (kt − 1, t) > ε ≥ ψd (kt , t).

The definition of ψε
d (u, t) is completed by setting ψε

d (u, t) = 0 for u = kt +
1, kt + 2, . . .

We can calculate ψε
d (u, t) instead of ψd (u, t) and the difference between the

two values is given by

ψε
d (u, t) ≤ ψd (u, t) ≤ ψε

d (u, t) + 3tε (6.14)

for t = 1, 2, 3, . . . We will not prove this result, but simply indicate the advan-
tage of calculating ψε

d (u, t) instead of ψd (u, t). First, by a suitable choice of ε,
we can control the error in our calculation. For example, if we set ε = 10−3/(3t)
then the difference between ψε

d (u, t) and ψd (u, t) will be at most 10−3. Sec-
ond, the upper limit of summation in equation (6.13) is in fact min(u, k1) since
hε

k = 0 for k > k1 and the lower limit of summation is max(0, u + 1 − kt−1)
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since ψε
d ( j, t − 1) = 0 for j > kt−1. Thus the number of computations involved

in calculating ψε
d (u, t) may be considerably less than the number required to

calculate ψd (u, t).
We illustrate an application of this algorithm in Chapter 8.

6.5 Lundberg’s inequality

In each of the examples in Section 6.3, ψd (u) is an exponential function for
u > 0. In this section, we derive a famous result known as Lundberg’s inequality
which shows that ψd is bounded above by an exponential function whenever
the moment generating function of Z1 exists. To do this we need to introduce
a new quantity known as the adjustment coefficient.

For our surplus process, the adjustment coefficient, which we denote by Rd ,
is defined to be the unique positive root of

E
[
exp{r (Z1 − 1)}] = 1

so that Rd is given by

E
[
exp{Rd (Z1 − 1)}] = 1.

We have provided no motivation for this definition, but it will be apparent from
the proof below of Lundberg’s inequality why Rd is defined in this way. To
show that the adjustment coefficient exists, we consider the function

g(r ) = E
[
exp{r (Z1 − 1)}] .

First, we note that g(r ) > 0 for r > 0 so the function is positive. Also, g(0) = 1
and

g′(r ) = E
[
(Z1 − 1) exp{r (Z1 − 1)}]

so that g′(0) = E[Z1] − 1 < 0. Thus the function is decreasing at 0. Further,
any turning point of the function is a minimum since

g′′(r ) = E
[
(Z1 − 1)2 exp{r (Z1 − 1)}] > 0,

and there is exactly one turning point since limr→∞ g(r ) = ∞. This final point
can be seen by noting that

g(r ) =
∞∑

k=0

er (k−1)hk >

∞∑
k=2

er (k−1)hk > er
∞∑

k=2

hk = er (1 − H (1)).
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Figure 6.1 The function g.

Thus, g(r ) decreases with r from the value 1 when r = 0 to a turning point, then
increases. Hence there is a unique positive number Rd such that g(Rd ) = 1, as
illustrated in Figure 6.1.

Example 6.3 Let Pr(Z1 = 0) = p = 1 − Pr(Z1 = 2) where 0.5 < p < 1 (as
in Example 6.1). Find Rd.

Solution 6.3 Again writing q = 1 − p, we have

E
[
exp{Rd (Z1 − 1)}] = p exp{−Rd} + q exp{Rd} (6.15)

and setting this equal to 1 gives

q exp{2Rd} − exp{Rd} + p = 0.

The solutions to this quadratic are exp{Rd} = 1 and exp{Rd} = p/q, from
which we deduce that Rd = log(p/q) since Rd is the positive number satisfying
equation (6.15).

Lundberg’s inequality states that

ψd (u) ≤ e−Rd u,

and we can prove this by proving that

ψd (u, t) ≤ e−Rd u

for t = 1, 2, 3, . . . since

ψd (u) = lim
t→∞ψd (u, t).
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We use induction on t to prove the result. As

ψd (u, 1) =
∞∑

k=u+1

hk

and exp{−Rd (u + 1 − k)} ≥ 1 for k = u + 1, u + 2, u + 3, . . . , since the ex-
ponent is non-negative, we have

ψ d (u, 1) ≤
∞∑

k=u+1

e−Rd (u+1−k)hk

≤
∞∑

k=0

e−Rd (u+1−k)hk

≤ e−Rd u
∞∑

k=0

eRd (k−1)hk

= e−Rd u,

where we have used the fact that
∞∑

k=0

eRd (k−1)hk = E
[
exp{Rd (Z1 − 1)}] = 1.

Now assume that ψd (u, t) ≤ e−Rd u for a fixed integer value of t , where t ≥ 1.
As

ψd (u, t + 1) = ψd (u, 1) +
u∑

k=0

hkψd (u + 1 − k, t),

our inductive hypothesis gives

ψd (u, t + 1) ≤
∞∑

k=u+1

hk +
u∑

k=0

hke−Rd (u+1−k),

and as
∞∑

k=u+1

hk ≤
∞∑

k=u+1

e−Rd (u+1−k)hk

it follows that

ψd (u, t + 1) ≤
∞∑

k=0

e−Rd (u+1−k)hk = e−Rd u,

and this completes the proof.

Example 6.4 Let Pr(Z1 = 0) = 0.8 = 1 − Pr(Z1 = 3). Calculate an upper
bound for ψd (5).
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Solution 6.4 The equation defining Rd is

0.2 exp{3Rd } − exp{Rd } + 0.8 = 0.

Solving numerically, for example by the Newton–Raphson method, gives Rd =
0.4457 and so

ψd (5) ≤ exp{−5 × 0.4457} = 0.1077.

6.6 Notes and references

The model discussed in this chapter can be described as a compound binomial
model. The reason for this is that the probability function {hk}∞k=0 is the same
as a compound binomial probability function whose counting distribution is
B(1, 1 − h0) and whose individual claim amount distribution has probability
function {hk/(1 − h0)}∞k=1.

Example 6.1 is a well-known problem from probability theory, known as the
gambler’s ruin problem. See, for example, Grimmett and Welsh (1986).

The truncation procedure in the recursive algorithm to calculate ψd (u, t)
was proposed by De Vylder and Goovaerts (1988), and this paper also contains
the method of proof of equation (6.14).

Readers who are familiar with martingales will recognise that the process
{exp{−RdU (n)}}∞n=0 is a martingale, and that Lundberg’s inequality can be
proved by martingale arguments – see, for example, Gerber (1979) or Rolski
et al. (1999). Under this approach, the equation defining Rd appears natural,
and this comment equally applies to the equation defining the adjustment co-
efficient for the model discussed in Chapter 7. However, martingale arguments
are not required to prove results discussed in Chapters 7 and 8 and so will not
be discussed further.

6.7 Exercises

1. Let Pr(Z1 = 0) = p = 1 − Pr(Z1 = 3) = 1 − q, where E[Z1] < 1.
(a) Find expressions for ψd (u) for u = 0, 1 and 2 and prove that

ψd (u) = q

p

(
ψd (u − 1) + ψd (u − 2)

)
for u = 3, 4, 5, . . .

(b) Find the least value of u such that ψd (u) < 0.01 when p = 0.8.
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2. Let Pr(Z1 = 0) = p and for k = 1, 2, 3, . . . let

Pr(Z1 = k) = q(1 − α)αk−1

where 0 < p < 1, p + q = 1 and E[Z1] < 1. Prove that Rd = log(p/α).
3. Define

Gd (u, y) = Pr(Td,u < ∞ and Ud (Td,u) > −y)

for u = 0, 1, 2, . . . and y = 1, 2, 3, . . . , so that Gd (u, y) is the probability
that ruin occurs from initial surplus u and that the insurer’s deficit at the
time of ruin is less than y.
(a) Verify that

Gd (0, y) =
y−1∑
j=0

[1 − H ( j)].

(b) Explain why

Gd (u, y) =
u−1∑
j=0

[1 − H ( j)]Gd (u − j, y) +
u+y−1∑

j=u

[1 − H ( j)].

(c) Let Z1 have the same distribution as in Exercise 2. Show that

Gd (u, y) = (1 − αy)
q

1 − α

(
α

p

)u

for u = 0, 1, 2, . . . and y = 0, 1, 2, . . .

(d) Let Z1 have the same distribution as in Exercise 1. Show that if ruin
occurs from initial surplus 0, the insurer’s deficit at ruin is uniformly
distributed on 0, 1, 2.

4. Let Pr(Z1 = 0) = 0.7, Pr(Z1 = 1) = 0.2 and Pr(Z1 = 2) = 0.1. Calculate
ψd (0, 3).
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Classical ruin theory

7.1 Introduction

In this chapter we consider a risk process known as the classical risk process, and
we derive some results for ruin probabilities. In particular, we prove Lundberg’s
inequality, show how explicit solutions for the probability of ultimate ruin can be
found, and describe methods of finding ultimate and finite time ruin probabilities
numerically. First we start with a description of the classical risk process.

7.2 The classical risk process

In the classical risk process, an insurer’s surplus at a fixed time t > 0 is de-
termined by three quantities: the amount of surplus at time 0, the amount of
premium income received up to time t , and the amount paid out in claims up to
time t . The only one of these three which is random is claims outgo, so we start
by describing the aggregate claims process, which we denote by {S(t)}t≥0.

Let {N (t)}t≥0 be a counting process for the number of claims, so that for a
fixed value t > 0, the random variable N (t) denotes the number of claims that
occur in the fixed time interval [0, t]. In the classical risk process it is assumed
that {N (t)}t≥0 is a Poisson process, a process which we briefly review in the
next section.

Individual claim amounts are modelled as a sequence of independent and
identically distributed random variables {Xi }∞i=1, so that Xi denotes the amount
of the i th claim. We can then say that the aggregate claim amount up to time t ,
denoted S(t), is

S(t) =
N (t)∑
i=1

Xi

125
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Time

Surplus

Figure 7.1 A realisation of a surplus process.

with the understanding that S(t) = 0 when N (t) = 0. The aggregate claims
process {S(t)}t≥0 is then a compound Poisson process, and we describe some
properties of this process in the next section.

We can now describe the surplus process, denoted by {U (t)}t≥0, as

U (t) = u + ct − S(t)

where u is the insurer’s surplus at time 0 and c is the insurer’s rate of
premium income per unit time, which we assume to be received continuously.
Fig. 7.1 shows a realisation of a surplus process.

Throughout this chapter we denote the distribution function of X1 by F ,
and we assume that F(0) = 0, so that all claim amounts are positive. For sim-
plicity, we assume that this distribution is continuous with density function f
and, keeping the notation of Chapter 4, the kth moment of X1 is denoted by mk .
Whenever the moment generating function of X1 exists, we denote it by MX ,
and we assume that when it exists, there exists some quantity γ , 0 < γ ≤ ∞,
such that MX (r ) is finite for all r < γ with

lim
r→γ −

MX (r ) = ∞.

This is a technical condition which we require in Section 7.5. As an illustration,
suppose that X1 ∼ γ (3, 3). Then MX (r ) = 27/(3 − r )3 for r < 3 and

lim
r→3−

MX (r ) = ∞

so that in this case, the value of γ is 3.
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This model is, of course, a simplification of reality. Some of the more impor-
tant simplifications are that we assume claims are settled in full as soon as they
occur, there is no allowance for interest on the insurer’s surplus, and there is no
mention of expenses that an insurer would incur. Nevertheless, this is a useful
model which can give us some insight into the characteristics of an insurance
operation.

7.3 Poisson and compound Poisson processes

In the literature on probability theory, Poisson processes are defined in differ-
ent ways. For our purposes, it is sufficient to define a Poisson process in the
following way. A counting process is a Poisson process with parameter λ if the
distribution of times between events is exponential with mean 1/λ. In our con-
text, an event is the occurrence of a claim. Thus, if we define Ai to be the time
between the (i − 1)th and i th events, with A1 being the time to the first event,
then {Ai }∞i=1 is a sequence of independent, exponentially distributed random
variables, each with mean 1/λ.

If a counting process is a Poisson process then the distribution of the number
of events up to a fixed time t is Poisson with parameter λt . This can be seen
from our definition, as follows. For fixed t > 0, let N (t) be the number of events
up to time t . Then for n = 0, 1, 2, . . . ,

N (t) ≥ n + 1 ⇔
n+1∑
i=1

Ai ≤ t.

Since each of A1, A2, . . . , An+1 is exponentially distributed with mean 1/λ it
follows that

∑n+1
i=1 Ai is distributed as γ (n + 1, λ). Hence

Pr(N (t) ≥ n + 1) = Pr

(
n+1∑
i=1

Ai ≤ t

)
= 1 −

n∑
j=0

e−λt (λt) j

j!

or, equivalently,

Pr(N (t) ≤ n) =
n∑

j=0

e−λt (λt) j

j!
,

giving

Pr(N (t) = n) = e−λt (λt)n

n!

for n = 0, 1, 2, . . . Thus, the distribution of N (t) is Poisson with parameter λt .
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Now let {N (t)}t≥0 be a Poisson process with parameter λ, and let {Xi }∞i=1 be
a sequence of independent and identically distributed random variables, each
with distribution function F , independent of N (t) for all t > 0. We define the
process {S(t)}t≥0 by

S(t) =
N (t)∑
i=1

Xi

with S(t) = 0 when N (t) = 0. The process {S(t)}t≥0 is said to be a compound
Poisson process with Poisson parameter λ. For a fixed value of t > 0, the random
variable S(t) has a compound Poisson distribution with Poisson parameter λt .

An important property of compound Poisson processes is that they have sta-
tionary and independent increments. In general, a stochastic process {Y (t)}t≥0

is said to have stationary increments if for 0 < s < t , the distribution of
Y (t) − Y (s), that is the increment of the process over the time interval from
s to t , depends only on t − s and not on the values of s and t .

A stochastic process {Y (t)}t≥0 is said to have independent increments if
for 0 < s < t ≤ u < v, Y (t) − Y (s) is independent of Y (v) − Y (u). Thus, if a
process has independent increments, the increments over non-overlapping time
intervals are independent. A process with stationary and independent increments
can be thought of as ‘starting over’ in a probabilistic sense at any point in
time.

In particular, the idea of ‘starting over’ holds for a compound Poisson process
because of the memoryless property of the exponential distribution. To see this,
consider the distribution of the time until the next event from a fixed time t .
Define τ to be the time of the last event prior to time t , letting τ = 0 if no events
occur prior to t . Now define Aτ and At to be the time until the next event from
times τ and t respectively. By definition, Aτ has an exponential distribution
with parameter λ. Hence

Pr(At > s) = Pr(Aτ > t − τ + s | Aτ > t − τ )

= Pr(Aτ > t − τ + s)/ Pr(Aτ > t − τ )

= exp{−λ(t − τ + s)}/exp{−λ(t − τ )}
= exp{−λs}.

In the context of a compound Poisson process representing an aggregate claims
process, from any fixed time t > 0, the distribution of the time until the next
claim is exponential with parameter λ and the distribution function of the next
claim amount is F . This is exactly the same situation as at time 0.
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7.4 Definitions of ruin probability

The probability of ruin in infinite time, also known as the ultimate ruin proba-
bility, is defined as

ψ(u) = Pr(U (t) < 0 for some t > 0).

In words, ψ(u) is the probability that the insurer’s surplus falls below zero at
some time in the future, that is that claims outgo exceeds the initial surplus plus
premium income. This is a probability of ruin in continuous time, and we can
also define a discrete time ultimate ruin probability as

ψr (u) = Pr(U (t) < 0 for some t , t = r, 2r, 3r, . . . ).

Thus, under this definition, ruin occurs only if the surplus is less than zero at one
of the time points r, 2r, 3r, . . . If ruin occurs under the discrete time definition,
it must also occur under the continuous time definition. However, the opposite
is not true. To see this, we consider a realisation of a surplus process which, for
some integer n, has U (nr ) > 0 and U ((n + 1)r ) > 0 with U (τ ) < 0 for some
τ ∈ (nr, (n + 1)r ). If U (t) > 0 for all t outside the interval (nr, (n + 1)r ), then
ruin occurs under the continuous time definition, but not under the discrete
time definition. Thus ψr (u) < ψ(u). However, as r becomes small, so that we
are ‘checking’ the surplus level very frequently, then ψr (u) should be a good
approximation to ψ(u).

We define the finite time ruin probability ψ(u, t) by

ψ(u, t) = Pr(U (s) < 0 for some s, 0 < s ≤ t).

Thus, ψ(u, t) is the probability that the insurer’s surplus falls below zero in the
finite time interval (0, t]. We can also define a discrete time ruin probability in
finite time as

ψr (u, t) = Pr(U (s) < 0 for some s, s = r, 2r, 3r, . . ., t)

where t is an integer multiple of r . The arguments used above to explain why
ψr (u) < ψ(u) also apply in finite time to give ψr (u, t) < ψ(u, t), and if r is
small, then ψr (u, t) should be a good approximation to ψ(u, t).

In this chapter we concentrate mostly on the ultimate ruin probability. In
Sections 7.7 and 7.8 we illustrate how some explicit solutions for ψ(u) can be
found, before describing numerical techniques for calculating ψ(u) and ψ(u, t)
in Section 7.9. However, we start with an upper bound for ψ(u), Lundberg’s
inequality, which is described in the next two sections.
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g(r)

R r
0

Figure 7.2 The function g.

Throughout this chapter we assume that c > λm1, so that, per unit of time,
the premium income exceeds the expected aggregate claim amount. It can be
shown that if this condition, known as the net profit condition, does not hold,
then ψ(u) = 1 for all u ≥ 0. It is often convenient to write c = (1 + θ )λm1, so
that θ is the premium loading factor.

7.5 The adjustment coefficient

The adjustment coefficient, which we denote by R, gives a measure of risk for a
surplus process. It takes account of two factors in the surplus process: aggregate
claims and premium income. For the classical risk process, the adjustment
coefficient is defined to be the unique positive root of

λMX (r ) − λ − cr = 0, (7.1)

so that R is given by

λ + cR = λMX (R). (7.2)

We remark that by writing c as (1 + θ )λm1, we can see that R is independent of
the Poisson parameter λ, and we discuss this point further in Section 7.7. To see
that there is a unique positive root of equation (7.1) we consider the function

g(r ) = λMX (r ) − λ − cr ,
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and show that it has the shape given in Fig. 7.2. To see this, first note that
g(0) = 0. Second,

d

dr
g(r ) = λ

d

dr
MX (r ) − c

so that

d

dr
g(r )

∣∣∣∣
r=0

= λm1 − c

and hence g is a decreasing function at zero as we have assumed that c > λm1.
Next, we note that

d2

dr2
g(r ) = λ

d2

dr2
MX (r ) = λ

∫ ∞

0
x2er x f (x) dx > 0

so that if g has a turning point, then the function attains its minimum at that
turning point. Finally, we note that

lim
r→γ −

g(r ) = ∞ (7.3)

(where γ is as defined in Section 7.2) so that as g is decreasing at zero, the
function must have a unique turning point, and hence there is a unique positive
number R such that g(R) = 0. To see that equation (7.3) is true, consider sepa-
rately the cases γ < ∞ and γ = ∞. In the former case, equation (7.3) clearly
holds. In the latter case, we note that since all claim amounts are positive, there
exists a positive number ε and a probability p such that

Pr(X1 > ε) = p > 0

so that

MX (r ) =
∫ ∞

0
er x f (x) dx ≥

∫ ∞

ε

er x f (x) dx ≥ erε p,

and hence

lim
r→∞g(r ) ≥ lim

r→∞(λerε p − λ − cr ) = ∞.

Example 7.1 Let F(x) = 1 − exp{−αx}, x ≥ 0. Find an expression for R.

Solution 7.1 As MX (r ) = α/(α − r ) equation (7.2) becomes

λ + cR = λα/(α − R)

which gives

R2 − (α − λ/c)R = 0

and so R = α − λ/c since R is the positive root of equation (7.1).
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Example 7.2 Let the individual claim amount distribution be γ (2, 2), and let
the premium loading factor be 10%. Calculate R.

Solution 7.2 As the mean individual claim amount is 1 and MX (r ) = 4/(2 −
r )2 for r < 2, equation (7.2) becomes

1 + 1.1R = 4/(2 − R)2

which gives

1.1R3 − 3.4R2 + 0.4R = 0.

The three solutions to this equation are R = 0, R = 0.1225 and R = 2.968,
and the solution we require is R = 0.1225 since the adjustment coefficient must
be positive and MX (r ) exists when r < 2.

In the two examples above, we have exact solutions for the adjustment
coefficient, but in other cases we must solve numerically. For example, when
X1 ∼ γ (2.5, 2.5), the adjustment coefficient is the unique positive root of

λ

(
2.5

2.5 − r

)2.5

− cr − λ = 0.

Given values of λ and c such a root can easily be found using a mathematical
software package. However, we can often approximate the adjustment coeffi-
cient by calculating an upper bound, as follows. Since

eRx ≥ 1 + Rx + 1
2 (Rx)2

for x ≥ 0, equation (7.2) yields the inequality

λ + cR ≥ λ

∫ ∞

0

(
1 + Rx + 1

2 (Rx)2
)

f (x) dx

and as ∫ ∞

0

(
1 + Rx + 1

2 (Rx)2
)

f (x) dx = 1 + Rm1 + 1
2 R2m2 ,

we obtain

R ≤ 2(c − λm1)

λm2
,

and this upper bound often provides a good approximation to R.

Example 7.3 Let the individual claim amount distribution be γ (2.5, 2.5), and
let the premium loading factor be 5%. Calculate an upper bound for R, and
use a numerical method to find the value of R to four decimal places.
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Table 7.1 Values of rn

n rn

1 0.06862
2 0.06850
3 0.06850
4 0.06850

Solution 7.3 As m1 = 1 and m2 = 7/5, we have

R ≤ 2 (1.05λ − λ)

7λ/5
= 1

14
= 0.0714.

We can solve numerically for R using the Newton–Raphson method with a
starting value of 0.0714. Writing

g(r ) =
(

5

5 − 2r

)5/2

− 1.05r − 1

so that

g′(r ) =
(

5

5 − 2r

)7/2

− 1.05,

we apply the Newton–Raphson method by calculating the sequence {rn} where
r0 = 0.0714 and rn+1 = rn − g(rn)/g′(rn). Table 7.1 shows values of rn for n =
1, 2, 3 and 4, and we deduce from this that to four decimal places R = 0.0685,
so that the upper bound is a reasonable approximation here.

7.6 Lundberg’s inequality

In the previous chapter we proved Lundberg’s inequality for the risk process
discussed there. For the classical risk process, Lundberg’s inequality states that

ψ(u) ≤ exp{−Ru}
where R is the adjustment coefficient.

As in the previous chapter, we can prove this result by an inductive argument.
We define ψn(u) to be the probability of ruin at or before the nth claim. It is
then sufficient to show that

ψn(u) ≤ exp{−Ru}
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for n = 1, 2, 3, . . . , since

ψ(u) = lim
n→∞ψn(u).

Therefore, we assume that for a fixed value of n, where n ≥ 1, ψn(u) ≤
exp{−Ru}. Next, we establish an expression for ψn+1(u) by considering the
time and the amount of the first claim, as follows.

Suppose that the first claim occurs at time t > 0 and that the amount of this
claim is x . If ruin occurs at or before the (n + 1)th claim, then either

(i) ruin occurs at the first claim, so that x > u + ct , or
(ii) ruin does not occur at the first claim, so that the surplus after payment of

this claim, u + ct − x , is non-negative, and ruin occurs from this surplus
level at one of the next n claims.

Since claims occur as a Poisson process (with parameter λ) the distribution of
the time until the first claim is exponential with parameter λ. Hence, integrating
over all possible times and amounts for the first claim we have

ψ n+1(u) =
∫ ∞

0
λe−λt

∫ ∞

u+ct
f (x) dx dt

+
∫ ∞

0
λe−λt

∫ u+ct

0
f (x)ψn(u + ct − x) dx dt.

Note that the first integral represents the probability of ruin at the first claim,
and the second represents the probability that ruin does not occur at the first
claim but does occur at one of the next n claims. Note also, that in probabilistic
terms the surplus process ‘starts over’ again after payment of the first claim,
and so the probability of ruin within n claims after payment of the first claim
is just ψn(u + ct − x).

We now apply our inductive hypothesis to write

ψn+1(u) ≤
∫ ∞

0
λe−λt

∫ ∞

u+ct
f (x) dx dt

+
∫ ∞

0
λe−λt

∫ u+ct

0
f (x)e−R(u+ct−x) dx dt.

Next, we use the fact that exp{−R(u + ct − x)} ≥ 1 for x ≥ u + ct , so that

∫ ∞

u+ct
f (x) dx ≤

∫ ∞

u+ct
e−R(u+ct−x) f (x) dx
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and hence

ψn+1(u) ≤
∫ ∞

0
λe−λt

∫ ∞

0
f (x)e−R(u+ct−x) dx dt

= e−Ru
∫ ∞

0
λe−(λ+cR)t

∫ ∞

0
eRx f (x) dx dt

= e−Ru
∫ ∞

0
λe−(λ+cR)t MX (R) dt.

Since λ + cR = λMX (R), the integral equals 1 and hence

ψn+1(u) ≤ exp{−Ru}.
Finally, we must show that the result is true when n = 1. Following the above

arguments we have

ψ1(u) =
∫ ∞

0
λe−λt

∫ ∞

u+ct
f (x) dx dt

≤
∫ ∞

0
λe−λt

∫ ∞

u+ct
f (x)e−R(u+ct−x) dx dt

≤
∫ ∞

0
λe−λt

∫ ∞

0
f (x)e−R(u+ct−x) dx dt

= e−Ru

and the proof is complete.

7.7 Survival probability

Define φ(u) = 1 − ψ(u) to be the probability that ruin never occurs starting
from initial surplus u, a probability also known as the survival probability.
An equation for φ can be established by adapting the reasoning used to prove
Lundberg’s inequality. By considering the time and the amount of the first claim,
we have

φ(u) =
∫ ∞

0
λe−λt

∫ u+ct

0
f (x)φ(u + ct − x) dx dt (7.4)

noting that if the first claim occurs at time t , its amount must not exceed u + ct ,
since ruin otherwise occurs. Substituting s = u + ct in equation (7.4) we get

φ(u) = 1

c

∫ ∞

u
λe−λ(s−u)/c

∫ s

0
f (x)φ(s − x) dx ds

= λ

c
eλu/c

∫ ∞

u
e−λs/c

∫ s

0
f (x)φ(s − x) dx ds. (7.5)
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We can establish an equation for φ, known as an integro-differential equation,
by differentiating equation (7.5), and the resulting equation can be used to derive
explicit solutions for φ. Differentiation gives

d

du
φ(u) = λ2

c2
eλu/c

∫ ∞

u
e−λs/c

∫ s

0
f (x)φ(s − x) dx ds

−λ

c

∫ u

0
f (x)φ(u − x) dx

= λ

c
φ(u) − λ

c

∫ u

0
f (x)φ(u − x) dx . (7.6)

At first sight equation (7.6) does not appear to be a very promising route, since
the function φ appears in three different places in this equation. However, by
eliminating the integral term, a differential equation can be created, and solved.

To see how such an approach works, let us consider the situation when
F(x) = 1 − e−αx , x ≥ 0. Then we have

d

du
φ(u) = λ

c
φ(u) − λ

c

∫ u

0
αe−αxφ(u − x) dx

= λ

c
φ(u) − αλ

c

∫ u

0
e−α(u−x)φ(x) dx

= λ

c
φ(u) − αλ

c
e−αu

∫ u

0
eαxφ(x) dx . (7.7)

Differentiation of equation (7.7) yields

d2

du2
φ(u) = λ

c

d

du
φ(u) + α2λ

c
e−αu

∫ u

0
eαxφ(x) dx − αλ

c
φ(u). (7.8)

The integral term in equation (7.8) is simply the integral term in equation (7.7)
multiplied by −α. Hence, if we multiply equation (7.7) by α and add the result-
ing equation to equation (7.8) we find that

d2

du2
φ(u) + α

d

du
φ(u) = λ

c

d

du
φ(u)

or

d2

du2
φ(u) +

(
α − λ

c

)
d

du
φ(u) = 0.

This is a second order differential equation whose general solution is

φ(u) = a0 + a1e−(α−λ/c)u
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where a0 and a1 are constants. Since Lundberg’s inequality applies, we know
that limu→∞ φ(u) = 1, which gives a0 = 1. It then follows that φ(0) = 1 + a1,
that is a1 = −ψ(0), so that

φ(u) = 1 − ψ(0)e−(α−λ/c)u .

All that remains is to solve for ψ(0), and this can be done generally on the
assumption that Lundberg’s inequality applies. Writing φ = 1 − ψ in equa-
tion (7.6) it follows that

d

du
ψ(u) = λ

c
ψ(u) − λ

c

∫ u

0
f (x)ψ(u − x) dx − λ

c
(1 − F(u)) ,

and integrating this equation over (0, ∞) we find that

−ψ(0) = λ

c

∫ ∞

0
ψ(u) du − λ

c

∫ ∞

0

∫ u

0
f (x)ψ(u − x) dx du

−λ

c

∫ ∞

0
(1 − F(u)) du. (7.9)

Changing the order of integration in the double integral in equation (7.9), we
have ∫ ∞

0

∫ u

0
f (x)ψ(u − x) dx du =

∫ ∞

0

∫ ∞

x
ψ(u − x) du f (x) dx

=
∫ ∞

0

∫ ∞

0
ψ(y) dy f (x) dx

=
∫ ∞

0
ψ(y) dy.

Thus, the first two terms on the right-hand side of equation (7.9) cancel, and we
find that

ψ(0) = λ

c

∫ ∞

0
(1 − F(u)) du = λm1

c
. (7.10)

We did not have to specify the form of F to prove this result, but we did assume
that Lundberg’s inequality applies. However, formula (7.10) holds generally,
and in Section 7.9 we derive it without assuming Lundberg’s inequality applies.

Thus, the complete solution for φ when F(x) = 1 − e−αx , x ≥ 0, is

φ(u) = 1 − λ

αc
exp {−(α − λ/c)u} . (7.11)

We remark that as R = α − λ/c, ψ(u) = ψ(0) exp{−Ru}, and this is the ana-
logue in the classical risk model of the result given in Example 6.2. Although
this method of solution can be used for other forms of F , we do not pursue it
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further. In the next section we show how equation (7.6) can be used in a different
way to solve for φ.

In Section 7.5 we saw that if the premium is written as c = (1 + θ )λm1,
then the adjustment coefficient is independent of λ. If we write c in this way in
equation (7.11), then

φ(u) = 1 − 1

1 + θ
exp {−αθ/(1 + θ )} ,

independent of λ. This independence holds for any individual claim amount
distribution, not just the exponential distribution. To see why this is the case,
consider the following two risks:

Risk I The aggregate claims process is a compound Poisson process with Pois-
son parameter 120 and individual claim amounts are exponentially distributed
with mean 1. The premium income per unit time is 132.

Risk II The aggregate claims process is a compound Poisson process with Pois-
son parameter 10 and individual claim amounts are exponentially distributed
with mean 1. The premium income per unit time is 11.

If we take the unit of time for Risk II to be one month, and the unit of time
for Risk I to be one year, we can see that the risks are identical. There is thus
no difference in the probability of ultimate ruin for these two risks. However,
if the unit of time for Risk II were one year, there would be a difference in the
time of ruin, which is discussed in Chapter 8.

7.8 The Laplace transform of φ

The Laplace transform is an important tool that can be used to solve both
differential and integro-differential equations. For completeness, we start this
section by defining the Laplace transform and listing some basic properties. We
then find a general expression for the Laplace transform of φ, and explain how
φ can be found from this expression.

Let h(y) be a function defined for all y ≥ 0. Then the Laplace transform of
h is defined as

h∗(s) =
∫ ∞

0
e−syh(y) dy.

There are some technical conditions for the existence of h∗, but as these hold
in our subsequent applications, we do not discuss them here.

An important property of a Laplace transform is that it uniquely identifies
a function, in the same way that a moment generating function uniquely
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identifies a distribution. The process of going from h∗ to h is known as
inverting the transform.

In this and the next chapter, we apply the following properties of Laplace
transforms.

(1) Let h1 and h2 be functions whose Laplace transforms exist, and let α1 and
α2 be constants. Then∫ ∞

0
e−sy (α1h1(y) + α2h2(y)) dy = α1h∗

1(s) + α2h∗
2(s).

(2) Laplace transform of an integral: let h be a function whose Laplace
transform exists and let

H (x) =
∫ x

0
h(y) dy.

Then H ∗(s) = h∗(s)/s.
(3) Laplace transform of a derivative: let h be a differentiable function whose

Laplace transform exists. Then∫ ∞

0
e−sy

(
d

dy
h(y)

)
dy = sh∗(s) − h(0).

(4) Laplace transform of a convolution: let h1 and h2 be as in Result (1)
above, and define

h(x) =
∫ x

0
h1(y)h2(x − y) dy.

Then h∗(s) = h∗
1(s)h∗

2(s).
(5) Laplace transform of a random variable: let X ∼ H , where H (0) = 0.

Then

E[e−s X ] =
∫ ∞

0
e−sy d H (y).

When the distribution is continuous with density function h,

E[e−s X ] = h∗(s).

Example 7.4 Let h(y) = 1 for y ≥ 0. Find h∗(s).

Solution 7.4 From the definition of a Laplace transform,

h∗(s) =
∫ ∞

0
e−sy dy = 1

s
.

Example 7.5 Let h(y) = exp{−αy}, y ≥ 0. Find h∗(s).
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Solution 7.5 We have

h∗(s) =
∫ ∞

0
e−sye−αy dy = 1

s + α
.

Example 7.6 Let F(x) = 1 − pe−αx − qe−βx , x ≥ 0, be a mixed exponential
distribution. Find F∗(s).

Solution 7.6 Applying the results of the previous two examples,

F∗(s) = 1

s
− p

α + s
− q

β + s
.

We can apply these general results about Laplace transforms to find the
Laplace transform of φ. Recall equation (7.6):

d

du
φ(u) = λ

c
φ(u) − λ

c

∫ u

0
f (x)φ(u − x) dx .

From Result (3), the Laplace transform of the left-hand side is sφ∗(s) − φ(0),
and from Results (1) and (4) the Laplace transform of the second term on the
right-hand side is −(λ/c) f ∗(s) φ∗(s). Hence we have

sφ∗(s) − φ(0) = λ

c
φ∗(s) − λ

c
f ∗(s)φ∗(s)

or

φ∗(s) = cφ(0)

cs − λ(1 − f ∗(s))
. (7.12)

When f ∗ is a rational function we can invert φ∗ to find φ, as illustrated in the
following example.

Example 7.7 Let f (x) = 4xe−2x , x > 0, and let c = 1.2λ. Find a formula for
φ(u).

Solution 7.7 We first note that m1 = 1 so that φ(0) = 1/6. Next,

f ∗(s) = 4
∫ ∞

0
xe−(2+s)x dx = 4

(2 + s)2 ,
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giving

φ∗(s) = 0.2λ

1.2λs − λ
(
1 − 4(2 + s)−2

)
= 0.2(2 + s)2

1.2s(2 + s)2 − (2 + s)2 + 4

= 0.2(2 + s)2

1.2s3 + 3.8s2 + 0.8s

= 0.2(2 + s)2

1.2s(s + R1)(s + R2)

= (1/6)(2 + s)2

s(s + R1)(s + R2)
(7.13)

where R1 = 0.2268 and R2 = 2.9399. Using partial fractions we can write

φ∗(s) = a0

s
+ a1

s + R1
+ a2

s + R2
(7.14)

where a0, a1 and a2 are constants. From equations (7.13) and (7.14) we have

a0(s + R1)(s + R2) + a1s(s + R2) + a2s(s + R1) = 1
6 (2 + s)2. (7.15)

Equating coefficients of powers of s2 in equation (7.15) we obtain

a0 + a1 + a2 = 1
6 .

Similarly, equating powers of s, we obtain

a0(R1 + R2) + a1 R2 + a2 R1 = 2
3

and equating constants we obtain

a0 R1 R2 = 2
3 .

We can thus solve for a0, a1 and a2, giving

φ∗(s) = 1

s
− 0.8518

s + R1
+ 0.0185

s + R2
.

Finally, we invert this Laplace transform to get

φ(u) = 1 − 0.8518e−R1u + 0.0185e−R2u.

This is a very powerful method of solving for φ, although it can be tedious
to apply by hand. However, it is usually a straightforward exercise to use this
approach with mathematical software which has the capacity to invert Laplace
transforms.
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7.9 Recursive calculation

In this section we describe two recursive methods which lead to (numerical)
bounds and approximations to ruin/survival probabilities. We describe each
method in turn, then conclude with numerical illustrations of each method.

7.9.1 The distribution of the maximum aggregate loss

We first show that φ is the distribution function of a compound geometric
random variable. This allows the use of the recursion formula (4.22) in the
calculation of bounds for, and approximations to, φ.

We start by considering a new process {L(t)}t≥0, known as the aggregate
loss process, defined by L(t) = S(t) − ct for all t ≥ 0, so that U (t) = u − L(t).
Next, we define the random variable L as the maximum of the aggregate loss
process, and we can relate L to φ as follows:

φ(u) = Pr(U (t) ≥ 0 for all t > 0)

= Pr(L(t) ≤ u for all t > 0)

= Pr(L ≤ u).

Thus, φ is the distribution function of L , and as L(0) = 0, L is a non-negative
valued random variable. Further, since φ(0) = Pr(L = 0), L has a mixed dis-
tribution with a mass of probability at zero.

In Section 7.7 we derived a formula for ψ(0) under the assumption that
Lundberg’s inequality applied. We now show that this formula is generally
true. Define L∗ to be the Laplace transform of the random variable L , so that

L∗(s) = E
[
e−sL

] =
∫ ∞

0
e−su dφ (u)

= φ(0) +
∫ ∞

0
e−su

(
d

du
φ(u)

)
du.

As the integral term is just the Laplace transform of the derivative of φ,

L∗(s) = φ(0) + sφ∗(s) − φ(0)

= sφ∗(s)

= csφ(0)

cs − λ(1 − f ∗(s))
(7.16)

where the final step follows from equation (7.12). We know that

L∗(s)
∣∣
s=0 = E

[
e−sL

]∣∣
s=0 = 1
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and we can also find L∗(s)|s=0 from equation (7.16) as

L∗(s)
∣∣
s=0 = cφ(0)

c + λ (d/ds) f ∗(s)|s=0

by l’Hôpital’s rule. Further, as

d

ds
f ∗(s)

∣∣∣∣
s=0

= −
∫ ∞

0
ye−sy f (y) dy

∣∣∣∣
s=0

= −m1,

we find that

1 = cφ(0)

c − λm1

and hence

φ(0) = 1 − λm1

c
.

We now turn our attention to the distribution of L . We proceed by noting
that the maximum of the aggregate loss process will be greater than zero only
if the surplus ever falls below its initial level, and the probability of this is
ψ(0). Suppose that this happens and the surplus falls to level u − l1. Then the
aggregate loss process attains a new record high at this point in time, namely
l1. The probability that the aggregate loss process attains another record high
is again ψ(0) because all that is required for this to happen is that the surplus
falls below the level u − l1 at some stage in the future. Here we are making use
of the fact that the compound Poisson process has stationary and independent
increments. If the fall below u − l1 is by amount l2, then the new record high of
the aggregate loss process is l1 + l2 and the increase in the record high of the
aggregate loss process is l2. Continuing in this way, we see that the probability
of n increases in the record high of the aggregate loss process is

ψ(0)nφ(0) (7.17)

for n = 0, 1, 2, . . . , and this is a geometric probability function. Further, the
maximum of the aggregate loss process is simply the sum of the increases in
the record high of the process. Thus, we can write L as a compound geometric
random variable:

L =
N∑

i=1

Li

where N is the number of increases in the record high of the aggregate loss
process, with probability function given by (7.17), and Li denotes the amount
of the i th increase in the record high of the aggregate loss process. As the
aggregate loss process ‘starts over’ each time there is a new record high of
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Figure 7.3 A realisation of a surplus process.
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Figure 7.4 The realisation of the aggregate loss process corresponding to the sur-
plus process in Fig. 7.3.

the process, {Li }∞i=1 is a sequence of independent and identically distributed
random variables. Figure 7.3 shows a realisation of a surplus process and Fig. 7.4
shows the corresponding realisation of the aggregate loss process, with three
new record highs of the aggregate loss process occurring.

We need the distribution of L1, a distribution known in the theory of stochas-
tic processes as a ladder height distribution, and we can use Laplace transforms
to find this distribution. Let K (x) = Pr(L1 ≤ x), and let k be the associated
density function. Then by applying techniques from Section 4.2.2,

E
[
e−sL

] = E
[
E

(
e−sL |N)] = E

[
k∗(s)N

]
where k∗(s) = E[exp{−sL1}]. Further, as N has a geometric distribution, L
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has a compound geometric distribution with

E
[
e−sL

] = φ(0)

1 − ψ(0)k∗(s)
. (7.18)

We have already seen that

E
[
e−sL

] = csφ(0)

cs − λ(1 − f ∗(s))

and so equating these two expressions we have

csφ(0)

cs − λ(1 − f ∗(s))
= φ(0)

1 − ψ(0)k∗(s)
,

which, on inserting ψ(0) = λm1/c, gives

k∗(s) = 1

m1s

(
1 − f ∗(s)

)
.

Using results from the previous section, we can invert this Laplace transform,
obtaining

k(x) = 1

m1
(1 − F(x)) .

Note that the distribution of L1 is a continuous one. Hence, if we wish to apply
formula (4.22) to compute (approximate) values of φ we have to discretise this
distribution. Although this approach does lead to reasonable approximations to
φ, a better approach is to find bounds for φ. The numerical illustrations later
in this section show that this approach gives us the correct value of φ, at least
to a certain number of decimal places. To obtain bounds we define the random
variable

Lα =
N∑

i=1

Lα,i

where N is as above, and
{

Lα,i
}∞

i=1 is a sequence of independent and identically
distributed random variables, each with distribution function Kα and probability
function

kα,x = K (x + 1) − K (x)

for x = 0, 1, 2, . . . Thus, for x ≥ 0, Kα(x) ≥ K (x). Similarly, we define the
random variable

Lβ =
N∑

i=1

Lβ,i
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where N is as above, and
{

Lβ,i
}∞

i=1
is a sequence of independent and identically

distributed random variables, each with distribution function Kβ and probability
function

kβ,x = K (x) − K (x − 1)

for x = 1, 2, 3, . . . Thus, for x ≥ 0, Kβ(x) ≤ K (x) with equality occurring
only when x is an integer. Thus

Kα(u) ≥ K (u) ≥ Kβ(u)

and from Section 5.5 we know that this ordering is preserved under convolution,
so that

K n∗
α (u) ≥ K n∗(u) ≥ K n∗

β (u).

As

φ(u) = φ(0) +
∞∑

n=1

ψ(0)nφ(0)K n∗(u), (7.19)

it follows that

Pr(Lα ≤ u) ≥ Pr(L ≤ u) ≥ Pr(Lβ ≤ u) (7.20)

and

Pr(Lα < u) ≥ Pr(L < u) ≥ Pr(Lβ < u). (7.21)

The key point in inequalities (7.20) and (7.21) is that for u > 0 the middle term
in each is φ(u), but because Lα and Lβ are discrete random variables

Pr(Lα < u) < Pr(Lα ≤ u) and Pr(Lβ < u) < Pr(Lβ ≤ u).

We can therefore bound φ(u) for u > 0 by

Pr(Lβ ≤ u) ≤ φ(u) ≤ Pr(Lα < u).

These bounds apply only for u > 0, and they can be calculated from for-
mula (4.22) since Lα,1 and Lβ,1 are discrete random variables. Specifically,
let φα(u) = Pr(Lα ≤ u) and φβ(u) = Pr(Lβ ≤ u). Then

φα(0) = φ(0)

1 − ψ(0)kα,0

and for u = 1, 2, 3, . . .

φα(u) = 1

1 − ψ(0)kα,0

(
φ(0) + ψ(0)

u∑
j=1

kα, jφα(u − j)

)
.
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Similarly, φβ(0) = φ(0), and for u = 1, 2, 3, . . .

φβ(u) = φ(0) + ψ(0)
u∑

j=1

kβ, jφβ(u − j).

To calculate these bounds we apply the procedure described in Section 4.7,
and, as illustrated in Section 7.9.3, tight bounds can be obtained by using high
values of the scaling factor introduced in Section 4.7.

7.9.2 Recursive calculation in a discrete time model

In the previous chapter we described a discrete time risk model and gave for-
mulae for both ultimate and finite time ruin probabilities. In this section, we
explain how ruin probabilities from this model can be used to approximate both
ultimate and finite time ruin probabilities in the classical risk model.

In the classical risk model we define the finite time ruin probability as

ψ(u, t) = Pr

(
u + cs −

N (s)∑
i=1

Xi < 0 for some s, 0 < s ≤ t

)

where, for a fixed value of s, N (s) ∼ Poisson(λs). We now write c
as (1 + θ )λm1, and set λ = m1 = 1 so that we are working in monetary units
equal to the mean individual claim amount and time units in which one claim
is expected. This is a convenient scaling of parameters that does not affect
principles.

Our approximating procedure is constructed on the basis of this scaled pro-
cess, and there are three steps involved in the construction

Step 1 For i = 1, 2, 3, . . . , replace Xi by X1,i where X1,i is a discrete random
variable distributed on 0, 1/β, 2/β, . . . where β > 0. The distribution of X1,i

should be chosen such that it is a good approximation to the distribution of Xi

(and we have seen in Chapter 4 how this can be done). Define

1ψ(u, t) = Pr

(
u + (1 + θ )s −

N (s)∑
i=1

X1,i < 0 for some s, 0 < s ≤ t

)
.

Then 1ψ(u, t) should be a good approximation to ψ(u, t).

Step 2 For i = 1, 2, 3, . . . , define X2,i = β X1,i and define

2ψ(w, t) = Pr

(
w + (1 + θ )βs −

N (s)∑
i=1

X2,i < 0 for some s, 0 < s ≤ t

)
.

Then we have 2ψ(βu, t) = 1ψ(u, t).
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Step 3 Now let us change the time scale. In particular, let us change the Poisson
parameter to 1/(1 + θ )β which means that our premium income per unit time
is 1, and so we can write

3ψ(w, t) = Pr

(
w + s −

N ∗(s)∑
i=1

X2,i < 0 for some s, 0 < s ≤ t

)
(7.22)

where, for a fixed value of s, N ∗(s) has a Poisson distribution with mean s/(1 +
θ )β. Then 3ψ(w, (1 + θ )βt) = 2ψ(w, t) and so

ψ(u, t) ≈ 3ψ(uβ, (1 + θ )βt).

We remark that 3ψ(u, t) gives the probability of ruin in continuous time
(with discrete individual claim amounts). We can now approximate this by a
probability of ruin in discrete time. To do this, we start by rewriting the definition
of ψd (u, t) from the previous chapter as

ψd (u, t) = Pr

(
u + n −

n∑
i=1

Zi ≤ 0 for some n, n = 1, 2, 3, . . . , t

)

(7.23)

where Zi represents the aggregate claim amount in the i th time period. Thus,
when Zi has a compound Poisson distribution with Poisson parameter 1/(1 +
θ )β and with individual claim amounts distributed as X2,i , equation (7.23) gives
the discrete time ruin probability corresponding to equation (7.22). Hence, our
approximation to ψ(u, t) is ψd (uβ, (1 + θ )βt), and similarly our approxima-
tion to ψ(u) is ψd (uβ). Intuitively, if we approximate a continuous time ruin
probability by a discrete time one, we would expect the approximation to be
good if the interval between the time points at which we ‘check’ the surplus is
small. In our approximation, we can achieve this by choosing a large value of β.

In our numerical illustrations in the next section we consider only the ulti-
mate ruin probability, while numerical illustrations relating to finite time ruin
are given in Chapter 8. Thus, in Section 7.9.3 we use equation (6.3) in our
approximation, that is

ψd (u + 1) = h−1
0

(
ψd (u) −

u∑
r=1

hu+1−rψd (r ) − [1 − H (u)]

)
.

From this formula we can calculate the function ψd recursively, starting from

ψd (0) = E [Z1] = 1/(1 + θ ).

Further, as Z1 has a compound Poisson distribution with a discrete individual
claim amount distribution, we can calculate the probability function of Z1 by
Panjer’s recursion formula, and hence obtain values of H .
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7.9.3 Numerical illustrations

As a first illustration we consider the situation when F(x) = 1 − e−x , x ≥ 0.
Then we know from Section 7.7 that for u ≥ 0,

ψ(u) = 1

1 + θ
exp {−θu/(1 + θ )} ,

so that this solution provides a benchmark against which we can compare the
numerical solutions produced by each of the methods described in the preceding
two sections.

To apply the method of bounds from Section 7.9.1 we first note that as
m1 = 1, k(x) = f (x) = e−x , a result which we discuss in Chapter 8. We then
rescale this distribution by a factor which we denote by κ . Table 7.2 shows
values of bounds for ψ(u) for a range of values of u and for three different
values of κ when θ = 0.1, while Table 7.3 shows approximations calculated by
averaging the bounds. Each table also shows the exact value of ψ(u).

In Table 7.2 the bounds become tighter as the value of κ increases. In particu-
lar, the lower bounds increase and the upper bounds decrease. We also note that
for each value of u, the average of the bounds gives an excellent approximation

Table 7.2 Bounds for ψ(u), exponential claims

Lower Bounds for ψ(u) Upper Bounds for ψ(u)

u κ = 20 κ = 50 κ = 100 ψ(u) κ = 100 κ = 50 κ = 20

5 0.57102 0.57464 0.57584 0.57703 0.57822 0.57941 0.58294
10 0.35867 0.36323 0.36475 0.36626 0.36778 0.36929 0.37381
15 0.22529 0.22960 0.23104 0.23248 0.23392 0.23537 0.23970
20 0.14151 0.14513 0.14635 0.14756 0.14879 0.15001 0.15370
25 0.08889 0.09174 0.09270 0.09366 0.09463 0.09561 0.09856
30 0.05583 0.05799 0.05872 0.05945 0.06019 0.06094 0.06320

Table 7.3 Approximations to ψ(u) by averaging bounds,
exponential claims

u κ = 20 κ = 50 κ = 100 ψ(u)

5 0.57698 0.57703 0.57703 0.57703
10 0.36624 0.36626 0.36626 0.36626
15 0.23250 0.23249 0.23248 0.23248
20 0.14761 0.14757 0.14757 0.14756
25 0.09373 0.09368 0.09367 0.09366
30 0.05952 0.05947 0.05946 0.05945
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Table 7.4 Approximations to ψ(u), exponential claims

u β = 20 β = 50 β = 100 ψ(u)

5 0.57709 0.57704 0.57704 0.57703
10 0.36633 0.36628 0.36627 0.36626
15 0.23255 0.23249 0.23248 0.23248
20 0.14762 0.14757 0.14757 0.14756
25 0.09371 0.09367 0.09367 0.09366
30 0.05948 0.05946 0.05945 0.05945

Table 7.5 Approximations to ψ(u), Pa (4,3) claims

u β = 20 β = 50 β = 100

10 0.47524 0.47520 0.47519
20 0.26617 0.26614 0.26613
30 0.15136 0.15134 0.15133
40 0.08689 0.08687 0.08687
50 0.05027 0.05026 0.05026
60 0.02930 0.02929 0.02929

to ψ(u), particularly when κ = 100. We remark that from Table 7.2, to two
decimal places the upper and lower bounds for ψ(30) are both 0.06, so that to
two decimal places ψ(30) = 0.06. By increasing the value of κ it is possible
to obtain ruin probabilities to more decimal places by using lower and upper
bounds in this way.

Table 7.4 shows approximations to ψ(u) for the same values of u as in
Table 7.3 using the recursion formula of Section 7.9.2, together with exact
values, using three different values for the scaling factor β (which can be thought
of as corresponding to the above values of κ). In applying this method, the
(scaled) exponential distribution was replaced by the discrete distribution given
by formula (4.33). We see from this table that this method also gives very good
approximations, and for this individual claim amount distribution there is little
difference between the methods in terms of approximations.

As a second illustration we consider the situation when the individual claim
amount distribution is Pa(4, 3). In this case there is no explicit solution for
ψ , but each of our numerical procedures can be used to provide excellent
approximations. Table 7.5 shows approximations calculated by the method of
Section 7.9.2 for the same three values of β and the same value of θ as in Table
7.4, again using the discretisation procedure given by formula (4.33). We can
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see that the pattern in this table is as in Table 7.4, and based on the accuracy
in that table we expect the values calculated using β = 100 to be very close to
the true values. For this situation, calculation by the method of Section 7.9.1 is
discussed in Exercise 12.

7.10 Approximate calculation of ruin probabilities

There are many ways in which the ultimate ruin probability can be approxi-
mated. However, the need for approximations has diminished in recent years as
numerical methods such as those described in the previous section can now be
implemented easily with modern computing power. In this section we describe
one simple approximation, known as De Vylder’s method. The main reason
for introducing this approximation will be explained in the next chapter. Two
further approximation methods are described in Exercises 9 and 10.

The idea underlying De Vylder’s method is a simple one. Suppose we have
a classical risk process {U (t)}t≥0 for which we wish to calculate the probability
of ultimate ruin. We can approximate this risk process by a classical risk process
{Ũ (t)}t≥0, which has the following characteristics:

� Ũ (0) = u,� the Poisson parameter is λ̃,� the premium income per unit time is c̃, and� the individual claim amount distribution is F̃(x) = 1 − exp{−α̃x}, x ≥ 0.

Since the individual claim amount distribution in the approximating risk process
is exponential with parameter α̃, it immediately follows by equation (7.11) that
the probability of ultimate ruin for the risk process {Ũ (t)}t≥0 is

λ̃

α̃c̃
exp

{− (
α̃ − λ̃/c̃

)
u
}
,

and this is De Vylder’s approximation to the ultimate ruin probability for the risk
process {U (t)}t≥0. The parameters λ̃, c̃ and α̃ are chosen by matching moments
of the two surplus processes. First, we set

E [U (t)] = E
[
Ũ (t)

]
which gives

u + ct − λm1t = u + c̃t − λ̃t/α̃
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or

c̃ = c − λm1 + λ̃/α̃. (7.24)

Next, we set

E
[
(U (t) − E [U (t)])2

] = E
[(

Ũ (t) − E
[
Ũ (t)

])2
]

and as

U (t) − E [U (t)] = −S(t) + λm1t,

this is equivalent to setting

V [S(t)] = V
[
S̃(t)

]
(where {S̃(t)}t≥0 denotes the aggregate claims process in the approximating
process {Ũ (t)}t≥0), which results in

λm2 = 2λ̃/α̃2. (7.25)

Thirdly, we set

E
[
(U (t) − E [U (t)])3] = E

[(
Ũ (t) − E

[
Ũ (t)

])3
]

which is equivalent to setting

Sk [S(t)] = Sk
[
S̃(t)

]
,

which leads to

λm3 = 6λ̃/α̃3. (7.26)

Equations (7.25) and (7.26) give

α̃ = 3m2/m3 (7.27)

and substituting for α̃ in equation (7.25) gives

λ̃ = 9λm3
2

2m2
3

. (7.28)

The final step is to obtain c̃ by inserting expressions (7.27) and (7.28) for α̃ and
λ̃ into equation (7.24).

All that is required to apply De Vylder’s approximation is that the first three
moments of the individual claim amount distribution exist. In situations when
the adjustment coefficient exists, the method usually provides good approxima-
tions when ruin probabilities are small, say below 5%. The approximation is,
however, inaccurate for small values of u, especially u = 0, but such values are
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Table 7.6 Exact and approximate
values of ψ(u), γ (2, 2) claims

u Exact Approximate

0 0.8333 0.8491
3 0.4314 0.4305
6 0.2185 0.2182
9 0.1107 0.1107

12 0.0560 0.0561
15 0.0284 0.0284
18 0.0144 0.0144

of little practical interest as the ruin probability is large. Generally, the method
is not particularly accurate when the adjustment coefficient does not exist.

Example 7.8 Let f (x) = 4xe−2x , x > 0, and let c = 1.2λ. Calculate De
Vylder’s approximation to ψ(u) for u = 0, 3, 6, . . . , 18 and compare these
approximations with the exact values.

Solution 7.8 For this individual claim amount distribution, m1 = 1, m2 = 3/2
and m3 = 3. Then by equation (7.28),

λ̃ = 9λ × 1.53

2 × 9
= 27λ

16
,

by equation (7.27), α̃ = 3/2, and hence by equation (7.24),

c̃ = 1.2λ − λ + 9λ

8
= 53λ

40
.

The approximation to ψ(u) is thus

45

53
exp {−12u/53} .

Table 7.6 shows exact and approximate values of ψ(u), where the exact values
can be calculated from the solution to Example 7.7, and we can see from this
table that the approximation is very good in this case.

7.11 Notes and references

Most of the material covered in both the early part of this chapter and the
exercises below is also covered in standard texts such as Gerber (1979) and
Klugman et al. (1998). The original reference for the recursive calculation of φ
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in Section 7.9.1 is Panjer (1986), and the method presented is due to Dufresne
and Gerber (1989). The recursive procedure in Section 7.9.2 is based on Dickson
and Waters (1991). Although there is no evidence in the examples presented
in Section 7.9.3, this recursive procedure is unstable. An alternative, stable,
algorithm is discussed in Dickson et al. (1995). De Vylder (1978) derived the
approximation which bears his name.

7.12 Exercises

1. An aggregate claims process {S(t)}t≥0 is a compound Poisson process
with Poisson parameter 100, and the individual claim amount distribution
is Pa(4, 300).
(a) Calculate the mean and variance of S(1).
(b) Calculate the mean and variance of S(2).
(c) Calculate the mean and variance of S(2) − S(1).

2. The aggregate claims process for a risk is a compound Poisson process
with Poisson parameter λ, and the individual claim amount distribution is
γ (2, 0.02). Calculate the adjustment coefficient when the premium
income per unit time is 130λ.

3. Using the approximation

exp{Rx} ≈ 1 + Rx + 1
2 R2x2 + 1

6 R3x3,

find an approximation to R when the individual claim amount distribution
is γ (2.5, 2.5) and c = 1.05λ.

4. Let the premium for S(1) be calculated according to the exponential
principle with parameter β. Show that β = R.

5. Consider a classical risk process with Poisson parameter λ = 100, an
individual claim amount distribution that is exponential with mean 1, and
a premium of 125 per unit time. Let nψ(u) denote the probability of ruin
at or before the nth claim, n = 1, 2, . . . , for this risk, given an initial
surplus u.
(a) Show that

1ψ(u) = 4
9 exp{−u}.

(b) Derive an expression for 2ψ(u).
6. Consider a classical risk process with an individual claim amount

distribution that is mixed exponential with density function

f (x) = 1
2

(
2 exp{−2x} + 2

3 exp{−2x/3})
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for x > 0. The premium for this risk is calculated with a loading factor
of 10%.
(a) Find the adjustment coefficient.
(b) Use the method of Laplace transforms to find an expression for

φ(u).
(c) Find De Vylder’s approximation to ψ(u), and calculate exact and

approximate values of ψ(u) for u = 0, 10, 20, . . . , 50. Comment on
the quality of the approximation.

7. Cramer’s asymptotic formula is

ψ(u) ∼ Ce−Ru

where R is the adjustment coefficient and

C = c/λ − m1

E[XeR X ] − c/λ
.

(a) Show that when F(x) = 1 − e−αx , x ≥ 0, the asymptotic formula is
exact.

(b) Repeat question 6(c), but now use Ce−Ru as an approximation to
ψ(u).

8. (a) Assuming that the required moments exist, show that

E[Lr
1] = mr+1

(r + 1)m1
.

(b) Find expressions for E[L] and E[L2] in terms of θ and mk ,
k = 1, 2, 3, when c = (1 + θ )λm1.

9. Tijms’ approximation to ψ(u) is

Ce−Ru + Ae−Su

where C and R are as in Cramer’s asymptotic formula, A is such that the
approximation gives the exact value of ψ(0), and S is such that∫ ∞

0
ψ(u) du =

∫ ∞

0

(
Ce−Ru + Ae−Su

)
du. (7.29)

(a) What is the rationale underlying identity (7.29)?
(b) Let the individual claim amount distribution be

f (x) = 1
6 e−x/2 + 1

3 e−x + 2
3 e−2x

for x > 0, and let the premium loading factor be 5%. Calculate Tijms’
approximation to ψ(20).
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10. Let the random variable Y have distribution function G where

G(x) = φ(0) + ψ(0)
∫ x

0

βα yα−1e−β y

�(α)
dy.

The Beekman–Bowers’ approximation uses G(u) as an approximation to
φ(u), where the parameters α and β are chosen such that E[Y r ] = E[Lr ]
for r = 1, 2.
(a) Show that when F(x) = 1 − e−µx , x ≥ 0, G(u) = φ(u).
(b) Repeat question 6(c), but now use the Beekman–Bowers’

approximation to ψ(u).
11. Let the individual claim amount distribution be exponential with mean

1/α, and let c = (1 + θ )λ/α. Use formula (7.19) to show that

φ(u) = 1 − 1

1 + θ
exp {−αθ/(1 + θ )} .

12. Let the individual claim amount distribution be Pa(4, 3).
(a) What is the distribution of L1?
(b) Using the method of Section 7.9.1, compute upper and lower bounds

for ψ(u) when θ = 0.1 for the values of u in Table 7.5. Calculate
approximations to ψ by averaging these bounds, and compare your
answers with the approximations in Table 7.5.
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Advanced ruin theory

8.1 Introduction

In this chapter we continue our study of the classical risk model. We start with
a useful result concerning the probability that ruin occurs without the surplus
process first attaining a specified level. This result will be applied in Sections
8.4 and 8.5 and Exercise 9. We then consider the insurer’s deficit when ruin
occurs and provide a means of finding the distribution of this deficit. We extend
this study by considering the insurer’s largest deficit before the surplus process
recovers to level 0. Following this, we consider the distribution of the insurer’s
surplus immediately prior to ruin. We then consider the distribution of the time
to ruin, and conclude with a discussion of a problem which involves modifying
the surplus process through the payment of dividends.

In this chapter we use the same assumptions and notation as in Chapter 7.

8.2 A barrier problem

Let us consider the following question: what is the probability that ruin occurs
from initial surplus u without the surplus process reaching level b > u prior
to ruin? An alternative way of expressing this question is to ask what is the
probability that ruin occurs in the presence of an absorbing barrier at b? We
denote this probability by ξ (u, b), and let χ (u, b) denote the probability that
the surplus process attains the level b from initial surplus u without first falling
below zero. To find expressions for ξ (u, b) and χ (u, b), we consider the prob-
abilities of ultimate ruin and survival respectively in an unrestricted surplus
process.

First, note that if survival occurs from initial surplus u, then the surplus pro-
cess must pass through the level b > u at some point in time, as the condition
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c > λm1 guarantees that U (t) → ∞ as t → ∞. Also, as the distribution of the
time to the next claim from the time the surplus attains b is exponential, the
probabilistic behaviour of the surplus process once it attains level b is inde-
pendent of its behaviour prior to attaining b. Hence φ(u) = χ (u, b) φ (b), or,
equivalently,

χ (u, b) = 1 − ψ(u)

1 − ψ(b)
.

Similarly, if ruin occurs from initial surplus u, then either the surplus process
does or does not attain level b prior to ruin. Hence

ψ(u) = ξ (u, b) + χ (u, b)ψ(b),

so that

ξ (u, b) = ψ(u) − 1 − ψ(u)

1 − ψ(b)
ψ(b) = ψ(u) − ψ(b)

1 − ψ(b)
.

Note that ξ (u, b) + χ (u, b) = 1, so that eventually either ruin occurs without
the surplus process attaining b or the surplus process attains level b.

8.3 The severity of ruin

In this section we are interested not just in the probability of ruin, but
also in the amount of the insurer’s deficit at the time of ruin should ruin
occur.

Given an initial surplus u, we denote the time of ruin by Tu and define it by

Tu = inf{t : U (t) < 0}
with Tu = ∞ if U (t) ≥ 0 for all t > 0. Thus, ψ(u) = Pr(Tu < ∞). Now define

G(u, y) = Pr(Tu < ∞ and U (Tu) ≥ −y)

to be the probability that ruin occurs and that the insurer’s deficit at ruin, or
severity of ruin, is at most y. Note that

lim
y→∞G(u, y) = ψ(u)

so that

G(u, y)

ψ(u)
= Pr(|U (Tu)| ≤ y | Tu < ∞)
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is a proper distribution function. Hence, for a given initial surplus u, G(u, ·) is
a defective distribution with (defective) density

g(u, y) = ∂

∂y
G(u, y).

We can solve for G using Laplace transforms, but to do so we first need an
expression for g(0, y). This can be obtained from Section 7.9.1, where we saw
that the amount of the first record high of the aggregate loss process (given that
such a record high occurs) has density function

k(x) = 1

m1
(1 − F(x)) . (8.1)

We also saw that the probability of a first record high of the aggregate loss
process is ψ(0). It immediately follows that k(y) = g(0, y)/ψ(0) so that

g(0, y) = λ

c
(1 − F(y)) .

We can now write down an expression for G(u, y) by noting that if ruin
occurs with a deficit of at most y, then on the first occasion on which the
surplus falls below its initial level u either

(i) the surplus falls to u − x(≥ 0), so that ruin subsequently occurs from this
surplus level with a deficit of at most y, or

(ii) ruin occurs at this fall with a deficit of at most y.

Hence we find that

G(u, y) =
∫ u

0
g(0, x)G(u − x, y) dx +

∫ u+y

u
g(0, x) dx (8.2)

= ψ(0)
∫ u

0
k(x)G(u − x, y) dx + ψ(0)η(u, y), (8.3)

where

η(u, y) =
∫ u+y

u
k(x) dx = K (u + y) − K (u).

Now let

G∗(s, y) =
∫ ∞

0
e−suG(u, y) du

and

η∗(s, y) =
∫ ∞

0
e−suη(u, y) du.
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Then by taking the Laplace transform of equation (8.3) we find that

G∗(s, y) = ψ(0)η∗(s, y)

1 − ψ(0)k∗(s)
.

Example 8.1 Let f (x) = αe−αx , x > 0. Show that G(u, y) = ψ(u)(1 − e−αy).

Solution 8.1 As k(x) = f (x),

η(u, y) = e−αu(1 − e−αy)

and

η∗(s, y) = 1 − e−αy

s + α
.

Hence

G∗(s, y) = ψ(0)(1 − e−αy)

s + α − ψ(0)α

and as ψ(0) = λ/(αc),

G∗(s, y) = λ

αc

1 − e−αy

s + α − λ/c

giving

G(u, y) = λ

αc
e−(α−λ/c)u(1 − e−αy) = ψ(u)(1 − e−αy).

The result in the above example is interesting as it says that if ruin occurs,
the distribution of the deficit at ruin is the same as the individual claim amount
distribution. For the classical risk model, this occurs only in the case of an
exponential distribution for individual claims, and the reason for this is the
memoryless property of the exponential distribution. Suppose that the surplus
at time T −

u (i.e. immediately prior to Tu) is x . Then

Pr
(|U (Tu)| > y | U (T −

u ) = x
)

is just the probability that the claim which occurs at time Tu exceeds x + y
given that it exceeds x , and this probability is

e−α(x+y)

e−αx
= e−αy

so that

Pr
(|U (Tu)| ≤ y | U (T −

u ) = x
) = 1 − e−αy

independent of x . In Exercise 3 of Chapter 6 we saw the analogue of this result
for the discrete model discussed in that chapter.
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Example 8.2 As in Example 7.7, let f (x) = 4xe−2x , x > 0, and let c = 1.2λ.
Find an expression for G(u, y).

Solution 8.2 First, we note that m1 = 1 and so

k(x) = 1 − F(x) = e−2x (1 + 2x)

= 1
2

(
2e−2x + 4xe−2x

)
and K (x) = 1 − e−2x (1 + x). Further,

η(u, y) = e−2u(1 + u) − e−2(u+y)(1 + u + y)

= e−2u(1 + u)(1 − e−2y) − e−2(u+y) y,

and so

η∗(s, y) = (1 − e−2y)

(
1

s + 2
+ 1

(s + 2)2

)
− ye−2y

s + 2
.

As ψ(0) = 5/6,

G∗(s, y) =
5
6

(
((1 − e−2y)(s + 3)/(s + 2)2) − (ye−2y/(s + 2))

)
1 − 5

12

(
(2/(s + 2)) + (4/(s + 2)2)

)

=
5
6

(
(1 − e−2y)(s + 3) − ye−2y(s + 2)

)
(s + 2)2 − 5

6 (s + 4)

=
5
6

(
(1 − e−2y)(s + 3) − ye−2y(s + 2)

)
(s + R1)(s + R2)

where R1 = 0.2268 and R2 = 2.9399 as in Example 7.7. Thus

G∗(s, y) = a1(y)

s + R1
+ a2(y)

s + R2

where

a1(y)(s + R2) + a2(y)(s + R1) = 5
6

(
(1 − e−2y)(s + 3) − ye−2y(s + 2)

)
.

Setting s = −R1 yields

a1(y) = 0.8518(1 − e−2y) − 0.5446ye−2y

and setting s = −R2 yields

a2(y) = −0.0185(1 − e−2y) − 0.2887ye−2y,
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and inversion of G∗(s, y) gives

G(u, y) = a1(y)e−R1u + a2(y)e−R2u

= 0.8518e−R1u(1 − e−2y) − 0.5446ye−R1u−2y

− 0.0185e−R2u(1 − e−2y) − 0.2887ye−R2u−2y .

As a check on the solution, note that

lim
y→∞ G(u, y) = 0.8518e−R1u − 0.0185e−R2u

which, from Example 7.7, is the solution for ψ(u). We explore this example
further in Exercise 4.

We recall from formula (7.18) that

L∗(s) = E
[
e−sL

] = φ(0)

1 − ψ(0)k∗(s)

and hence

G∗(s, y) = ψ(0)

φ(0)
η∗(s, y)L∗(s). (8.4)

Since the right-hand side of equation (8.4) is the product of two Laplace trans-
forms it is the transform of a convolution, and hence we can invert G∗(s, y) to
obtain

G(u, y) = ψ(0)

φ(0)

∫ u

0
η(u − x, y) dφ(x)

= ψ(0)

φ(0)

∫ u

0
(K (u − x + y) − K (u − x)) dφ(x).

Note that since the distribution function φ has a mass of probability of amount
φ(0) at 0, we have

G(u, y) = ψ(0) (K (u + y) − K (u))

+ ψ(0)

φ(0)

∫ u

0
(K (u − x + y) − K (u − x)) φ′(x) dx . (8.5)

We can use this result to find an alternative way of expressing G(u, y) which
is not practical in terms of deriving explicit solutions, but which proves to be
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useful in Section 8.5. Recall from Chapter 7 that

φ(u) = φ(0) +
∞∑

n=1

ψ(0)nφ(0)K n∗(u)

so that for u > 0,

d

du
φ(u) =

∞∑
n=1

ψ(0)nφ(0)kn∗(u).

Then, noting that

K (u − x + y) − K (u − x) =
∫ u−x+y

u−x
k(z) dz,

we can write equation (8.5) as

G(u, y) = ψ(0) (K (u + y) − K (u))

+
∞∑

n=1

ψ(0)n+1
∫ u

0
kn∗(x)

∫ u−x+y

u−x
k(z) dz dx . (8.6)

The interpretation of this result is that in the expression

ψ(0)n+1kn∗(x)
∫ u−x+y

u−x
k(z) dz dx

ψ(0)nkn∗(x) dx represents the probability that the nth record low of the surplus
process results in a surplus between u − x and u − x + dx , and

ψ(0)
∫ u−x+y

u−x
k(z) dz

represents the probability that the next record low results in ruin with a deficit
of at most y.

8.4 The maximum severity of ruin

We now extend the analysis of the previous section. We allow the surplus process
to continue if ruin occurs, and we consider the insurer’s maximum severity of
ruin from the time of ruin until the time that the surplus process next attains
level 0. As we are assuming that c > λm1, it is certain that the surplus process
will attain this level.
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We define T ′
u to be the time of the first upcrossing of the surplus process

through level 0 after ruin occurs and define the random variable Mu by

Mu = sup
{|U (t)| , Tu ≤ t ≤ T ′

u

}
,

so that Mu denotes the maximum severity of ruin. Let

Ju(z) = Pr(Mu ≤ z | Tu < ∞)

be the distribution function of Mu given that ruin occurs. The maximum severity
of ruin will be no more than z if ruin occurs with a deficit y ≤ z and if the surplus
does not fall below −z from the level −y. In the notation of Section 8.2, the
probability of this latter event is χ (z − y, z) since attaining level 0 from level
−y without falling below −z is equivalent to attaining level z from level z − y
without falling below 0. Thus

Ju(z) =
∫ z

0

g(u, y)

ψ(u)
χ (z − y, z) dy

= 1

ψ(u)φ(z)

∫ z

0
g(u, y)φ(z − y) dy.

We can evaluate this expression by noting that

ψ(u + z) =
∫ ∞

z
g(u, y) dy +

∫ z

0
g(u, y)ψ(z − y) dy. (8.7)

This follows by noting that if ruin occurs from initial surplus u + z, then the
surplus process must fall below z at some time in the future. By partitioning this
event according to whether ruin occurs at the time of this fall, the probability of
which is given by the first integral, or at a subsequent time, the probability of
which is given by the second integral, we obtain equation (8.7) for ψ(u + z).
Noting that ψ = 1 − φ, we can write equation (8.7) as∫ z

0
g(u, y)φ(z − y) dy =

∫ ∞

z
g(u, y) dy +

∫ z

0
g(u, y) dy − ψ(u + z)

= ψ(u) − ψ(u + z).

Thus,

Ju(z) = ψ(u) − ψ(u + z)

ψ(u) (1 − ψ(z))
.

Example 8.3 Let f (x) = e−x , x > 0, and let c = (1 + θ )λ. Show that Ju can
be represented as an infinite mixture of exponential distributions.
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Solution 8.3 From Section 7.7 we know that ψ(u) = (1 − R)e−Ru where R =
θ/(1 + θ ). Hence

Ju(z) = 1 − e−Rz

1 − (1 − R)e−Rz

= (
1 − e−Rz

) ∞∑
j=0

(1 − R) j e−R jz

=
∞∑
j=0

(1 − R) j e−R jz −
∞∑
j=0

(1 − R) j e−R( j+1)z

= 1 −
∞∑
j=1

R(1 − R) j−1e−R jz .

As
∞∑
j=1

R(1 − R) j−1 = 1,

we have

Ju(z) =
∞∑
j=1

v j
(
1 − e−R jz

)
where v j = R(1 − R) j−1 so that Ju is an infinite mixture of exponential distri-
butions.

8.5 The surplus prior to ruin

In this section we consider the distribution of the surplus immediately prior
to ruin. In Section 8.3 we introduced the notation T −

u to denote the time im-
mediately prior to ruin. Now let U (T −

u ) denote the level of the surplus process
immediately prior to payment of the claim that causes ruin. Then the probability
that ruin occurs from initial surplus u and that the surplus immediately prior to
ruin is less than x is

W (u, x) = Pr
(
Tu < ∞ and U (T −

u ) < x
)

.

We note that W is a defective distribution function for the same reason that G
is in Section 8.3, namely that Pr(Tu < ∞) < 1.

A key point in obtaining expressions for W is that for 0 ≤ u < x , ruin may
or may not occur with a surplus prior to ruin less than x on the first occasion
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that the surplus falls below its initial level, but for u ≥ x it may not. Thus, the
two cases 0 ≤ u < x and u ≥ x must be treated separately.

Consider first the situation when 0 ≤ u < x . Note that if the surplus process
never reaches x , then ruin must occur with a surplus prior to ruin less than x .
Hence, by considering whether the surplus process attains the level x prior to
ruin or not, we can write

W (u, x) = ξ (u, x) + χ (u, x)W (x, x) (8.8)

where the functions ξ and χ are as defined in Section 8.2.
Next, consider the situation when u = x . Note that if the surplus prior to ruin

is less than x , then on the first occasion that the surplus falls below its initial
level, it must fall to some level between 0 and x . (Otherwise ruin occurs at the
time of the first fall below the initial level, so that the surplus prior to ruin is at
least x .) By conditioning on the amount of the first fall below the initial level
we find that

W (x, x) =
∫ x

0
g(0, y)W (x − y, x) dy. (8.9)

As we know the form of W (u, x) for u < x , we can insert this in equation (8.9),
giving

W (x, x) =
∫ x

0
g(0, y) (ξ (x − y, x) + χ (x − y, x)W (x, x)) dy

and rearranging this identity we get

W (x, x) =
∫ x

0 g(0, y)ξ (x − y, x) dy

1 − ∫ x
0 g(0, y)χ (x − y, x) dy

. (8.10)

To simplify equation (8.10) note that as y → ∞ in equation (8.2) we get

ψ(u) =
∫ u

0
g(0, y)ψ(u − y) dy +

∫ ∞

u
g(0, y) dy (8.11)

=
∫ u

0
g(0, y)ψ(u − y) dy + ψ(0) − G(0, u)

so that ∫ u

0
g(0, y)ψ(u − y) dy = ψ(u) − ψ(0) + G(0, u).

Hence, the numerator on the right-hand side of equation (8.10) can be written
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as ∫ x

0
g(0, y)ξ (x − y, x) dy =

∫ x

0
g(0, y)

ψ(x − y) − ψ(x)

1 − ψ(x)
dy

= ψ(x) − ψ(0) + G(0, x) − ψ(x)G(0, x)

1 − ψ(x)

and the integral in the denominator as∫ x

0
g(0, y)χ (x − y, x) dy =

∫ x

0
g(0, y)

1 − ψ(x − y)

1 − ψ(x)
dy

= G(0, x) − ψ(x) + ψ(0) − G(0, x)

1 − ψ(x)
.

Thus, we obtain

W (x, x) = ψ(x) − ψ(0) + G(0, x) − ψ(x)G(0, x)

1 − ψ(0)
. (8.12)

We can now use equations (8.8) and (8.12) to obtain

W (u, x) = 1 − G(0, x)

1 − ψ(0)
ψ(u) − ψ(0) − G(0, x)

1 − ψ(0)
(8.13)

for 0 ≤ u < x . In particular, note that when u = 0 we obtain the remarkable
identity W (0, x) = G(0, x), and we discuss this result at the end of this section.

We can now consider the situation when u > x . The argument applied to
the case u = x can be modified by noting that if the surplus prior to ruin is less
than x , then there must be a first occasion on which the surplus falls below x ,
and the amount of this fall below x cannot exceed x . The probability that the
surplus falls from u to a level between x and 0 is the same as the probability
that ruin occurs from an initial surplus of u − x with a deficit at ruin of at most
x . Hence we can write

W (u, x) =
∫ x

0
g(u − x, y)W (x − y, x) dy. (8.14)

As in the case u = x , we can insert for W (x − y, x) in equation (8.14), but now
using equation (8.13), and we obtain

W (u, x) = 1 − G(0, x)

1 − ψ(0)

∫ x

0
g(u − x, y)ψ(x − y) dy

− ψ(0) − G(0, x)

1 − ψ(0)
G(u − x, x). (8.15)

To evaluate the integral term in (8.15), we note that for any x < u the ultimate



168 Advanced ruin theory

ruin probability ψ(u) can be written as

ψ(u) =
∫ x

0
g(u − x, y)ψ(x − y) dy +

∫ ∞

x
g(u − x, y) dy.

We can write this because ruin can occur in one of the two following ways.
Either the surplus can fall below x for the first time (but by no more than x)
to level x − y and ruin can subsequently occur from this level, or the surplus
can fall below x for the first time by an amount greater than x , causing ruin to
occur. Thus,∫ x

0
g(u − x, y)ψ(x − y) dy = ψ(u) −

∫ ∞

x
g(u − x, y) dy

= ψ(u) − ψ(u − x) + G(u − x, x).

Inserting this expression into equation (8.15) we obtain after a little algebra

W (u, x) = G(u − x, x) − 1 − G(0, x)

1 − ψ(0)
(ψ(u − x) − ψ(u)) (8.16)

for u > x .
As equation (8.12) satisfies both (8.13) and (8.16), we can summarise the

above results as:

W (u, x) = 1 − G(0, x)

1 − ψ(0)
ψ(u) − ψ(0) − G(0, x)

1 − ψ(0)
(8.17)

for 0 ≤ u ≤ x , and

W (u, x) = G(u − x, x) − 1 − G(0, x)

1 − ψ(0)
(ψ(u − x) − ψ(u)) (8.18)

for u ≥ x . Thus, the defective distribution function of the surplus prior to ruin is
expressed in terms of the ultimate ruin probability and the defective distribution
function of the deficit at ruin. Although these results are relatively simple to
apply when both ψ and G are known, it turns out that it is easier to deal with
the defective density function w which we define as

w(u, x) = ∂

∂x
W (u, x).

We note that although the function W is continuous at u = x it is not differ-
entiable and so in considering w we must consider the two cases u < x and
u > x .

When u < x , it is straightforward to find w(u, x) by differentiating equation
(8.17). We get

w(u, x) = g(0, x)
1 − ψ(u)

1 − ψ(0)



8.5 The surplus prior to ruin 169

and as W (0, x) = G(0, x), w(0, x) = g(0, x) = (λ/c)(1 − F(x)), giving

w(u, x) = λ

c
(1 − F(x))

1 − ψ(u)

1 − ψ(0)
.

When u > x , differentiation of equation (8.18) yields

w(u, x) = ∂

∂x
G(u − x, x) + g(0, x)

ψ(u − x) − ψ(u)

1 − ψ(0)

− 1 − G(0, x)

1 − ψ(0)

∂

∂x
ψ(u − x). (8.19)

This equation simplifies considerably and the key to it is the rather unattractive
expression for G derived as formula (8.6). From this expression, we can write
G(u − x, x) as

G(u − x, x) = ψ(0) (K (u) − K (u − x))

+
∞∑

n=1

ψ(0)n+1
∫ u−x

0
kn∗(s)

∫ u−s

u−x−s
k(z) dz ds

and hence

∂

∂x
G(u − x, x) = ψ(0)k(u − x) −

∞∑
n=1

ψ(0)n+1kn∗(u − x)
∫ x

0
k(z) dz

+
∞∑

n=1

ψ(0)n+1
∫ u−x

0
kn∗(s)k(u − x − s) ds

= ψ(0)k(u − x) −
∞∑

n=1

ψ(0)n+1kn∗(u − x)K (x)

+
∞∑

n=1

ψ(0)n+1k(n+1)∗(u − x)

=
∞∑

n=1

ψ(0)nkn∗(u − x) −
∞∑

n=1

ψ(0)n+1kn∗(u − x)K (x)

=
∞∑

n=1

ψ(0)nkn∗(u − x) [1 − ψ(0)K (x)] .

Similarly, letting y → ∞ in formula (8.6), we can write

ψ(u − x) = ψ(0) (1 − K (u − x)) +
∞∑

n=1

ψ(0)n+1
∫ u−x

0
kn∗(s)

∫ ∞

u−x−s
k(z) dz ds
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so that

∂

∂x
ψ(u − x) = ψ(0)k(u − x) −

∞∑
n=1

ψ(0)n+1kn∗(u − x)

+
∞∑

n=1

ψ(0)n+1
∫ u−x

0
kn∗(s)k(u − x − s) ds

=
∞∑

n=1

ψ(0)nkn∗(u − x) −
∞∑

n=1

ψ(0)n+1kn∗(u − x)

=
∞∑

n=1

ψ(0)nkn∗(u − x) [1 − ψ(0)] .

Thus

∂

∂x
G(u − x, x) = 1 − ψ(0)K (x)

1 − ψ(0)

∂

∂x
ψ(u − x)

and as G(0, x) = ψ(0)K (x), equation (8.19) gives

w(u, x) = g(0, x)
ψ(u − x) − ψ(u)

1 − ψ(0)

= λ

c
(1 − F(x))

ψ(u − x) − ψ(u)

1 − ψ(0)

for u > x .
These results show that if we know both F and ψ then we also know w, and

it is indeed remarkable that so little information is required to find w. It is also
clear from these results that for u > 0 the density w(u, x) has a discontinuity
at x = u.

We conclude this section by noting that the identity W (0, x) = G(0, x) can
be explained by dual events. Consider a realisation of a surplus process which
starts at u = 0 for which ruin occurs with a surplus prior to ruin less than x .
For this realisation, there is a unique realisation of a dual process {Û (t)}t≥0

such that ruin occurs in the dual realisation with a deficit less than x . The dual
process is constructed by defining

Û (t) = −U (T ′
0 − t) for 0 ≤ t ≤ T ′

0

Û (t) = U (t) for t > T ′
0

where T ′
0 is the time of the first upcrossing of the surplus process through

surplus level 0. Figure 8.1 shows a realisation of a surplus process for which
ruin occurs from initial surplus 0 with a surplus less than 1 prior to ruin, while
Fig. 8.2 shows the dual realisation in which the deficit at ruin is less than 1. We
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Figure 8.1 A realisation of a surplus process starting at u = 0 for which the surplus
prior to ruin is less than 1.
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Figure 8.2 The dual of the realisation in Fig. 8.1.

can see in Fig. 8.1 that four claims of amounts x1, . . . , x4 (say) occur between
time 0 and time T ′

0, at times t1, . . . , t4 (say). In Fig. 8.2 claims of amounts
x4, . . . , x1 occur at times T ′

0 − t4, . . . , T ′
0 − t1, and so the likelihoods of these

realisations are identical.
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8.6 The time of ruin

In Section 8.3 we introduced the random variable Tu denoting the time of ruin.
The distribution of Tu is important since Pr(Tu ≤ t) gives the probability that
ruin occurs at or before time t . In other words, if we know the distribution of Tu ,
we are able to compute finite time ruin probabilities. In this section we consider
exact and approximate calculation of the density and moments of Tu .

8.6.1 The Laplace transform of Tu

Define a function ϕ as

ϕ(u, δ) = E
[
e−δTu I (Tu < ∞)

]
where δ is a non-negative parameter which we consider in this section as the
parameter of a Laplace transform, and I is the indicator function, so that I (A) =
1 if the event A occurs and equals 0 otherwise. In Section 8.7 we consider a
function similar to ϕ, and in that function the interpretation of δ is that it is
the force of interest. With this interpretation, ϕ(u, δ) gives the expected present
value of 1 payable at the time of ruin.

We can derive an integro-differential equation for ϕ using the technique of
conditioning on the time and the amount of the first claim. However, we must
now take account of the ‘discount factor’ in the definition of ϕ. Thus

ϕ(u, δ) =
∫ ∞

0
λe−λt e−δt

∫ u+ct

0
f (x)ϕ(u + ct − x, δ) dx dt

+
∫ ∞

0
λe−λt e−δt

∫ ∞

u+ct
f (x) dx dt. (8.20)

Substituting s = u + ct in equation (8.20) gives

ϕ(u, δ) = λ

c

∫ ∞

u
e−(λ+δ)(s−u)/c

∫ s

0
f (x)ϕ(s − x, δ) dx ds

+ λ

c

∫ ∞

u
e−(λ+δ)(s−u)/c

∫ ∞

s
f (x) dx ds,

and differentiating this equation with respect to u we get

∂

∂u
ϕ(u, δ) = λ + δ

c
ϕ(u, δ) − λ

c

∫ u

0
f (u − x)ϕ(x, δ) dx − λ

c
(1 − F(u)) .

(8.21)

Equation (8.21) is a general equation which can be solved for different forms
of F . For the remainder of this section we concentrate on the special case when
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F(x) = 1 − e−αx , x ≥ 0. Then, by inserting for both f and F in equation (8.21)
we get

∂

∂u
ϕ(u, δ) = λ + δ

c
ϕ(u, δ) − λ

c

∫ u

0
αe−α(u−x)ϕ(x, δ) dx − λ

c
e−αu (8.22)

= λ + δ

c
ϕ(u, δ) − λ

c
e−αu

∫ u

0
αeαxϕ(x, δ) dx − λ

c
e−αu .

Applying the same technique as in Section 7.7, differentiation gives

∂2

∂u2
ϕ(u, δ) = λ + δ

c

∂

∂u
ϕ(u, δ) + αλ

c
e−αu

∫ u

0
αeαxϕ(x, δ) dx

− αλ

c
ϕ(u, δ) + αλ

c
e−αu

so that

∂2

∂u2
ϕ(u, δ) + α

∂

∂u
ϕ(u, δ) = λ + δ

c

∂

∂u
ϕ(u, δ) + αδ

c
ϕ(u, δ)

or

∂2

∂u2
ϕ(u, δ) +

(
α − λ + δ

c

)
∂

∂u
ϕ(u, δ) − αδ

c
ϕ(u, δ) = 0. (8.23)

The general solution of equation (8.23) is

ϕ(u, δ) = κ1eρδu + κ2e−Rδu

where ρδ > 0 and −Rδ < 0 are the roots of the characteristic equation of (8.23),
which is

s2 +
(

α − λ + δ

c

)
s − αδ

c
= 0, (8.24)

and κ1 and κ2 depend on δ.

Since ϕ(u, δ) ≤ ψ(u),

lim
u→∞ ϕ(u, δ) = 0,

and it follows that κ1 = 0 and κ2 = ϕ(0, δ). To find ϕ(0, δ), we insert
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ϕ(0, δ)e−Rδu for ϕ(u, δ) in equation (8.22), and obtain

−Rδϕ(0, δ)e−Rδu = λ + δ

c
ϕ(0, δ)e−Rδu

−λ

c

∫ u

0
αe−α(u−x)ϕ(0, δ)e−Rδ x dx − λ

c
e−αu

= λ + δ

c
ϕ(0, δ)e−Rδu

− λα

c
e−αuϕ(0, δ)

1

α − Rδ

(
e(α−Rδ )u − 1

) − λ

c
e−αu .

Rearranging this identity we obtain

0 = ϕ(0, δ)e−Rδu

(
Rδ + λ + δ

c
− λα

c

1

α − Rδ

)

+ e−αu

(
λα

c

ϕ(0, δ)

α − Rδ

− λ

c

)

which gives

ϕ(0, δ) = 1 − Rδ/α

since

Rδ + λ + δ

c
− λα

c

1

α − Rδ

= −1

α − Rδ

(
R2

δ −
(

α − λ + δ

c

)
Rδ − αδ

c

)
= 0

by equation (8.24). Hence,

ϕ(u, δ) = (1 − Rδ/α) e−Rδu . (8.25)

Note that setting δ = 0 we get

ϕ(u, 0) = E [I (Tu < ∞)] = ψ(u)

and as R0 is just the adjustment coefficient, equation (8.25) gives the ultimate
ruin probability as a special case.

From equation (8.24) we find that

Rδ = −λ − δ + cα +
√

(cα − δ − λ)2 + 4cδα

2c
, (8.26)

and with this expression, we can use equation (8.25) to find both the moments
and the density function of Tu . To find the moments we note that

(−1)k ∂k

∂δk ϕ(u, δ)

∣∣∣∣
δ=0

= E
[
T k

u I (Tu < ∞)
]
.
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Thus, by repeated differentiation of the function ϕ we can obtain the moments
of the time to ruin. For example,

∂

∂δ
ϕ(u, δ) = − R′

δ

α
e−Rδu − (1 − Rδ/α)R′

δue−Rδu,

and from equation (8.26),

R′
δ = 1

2c

(
−1 + (

(cα − δ − λ)2 + 4cδα
)−1/2

(δ + λ + cα)
)

,

which gives

R ′
0 = λ

c (cα − λ)
.

As R0 is the adjustment coefficient, we have R0 = α − λ/c, and so

E [Tu I (Tu < ∞)] = R′
0

α
e−R0u + (1 − R0/α)R′

0ue−R0u.

Division by ψ(u) = (1 − R0/α)e−R0u gives the expected time to ruin, given
that ruin occurs, as

E
[
Tu,c

] = R′
0

α − R0
+ R′

0u

= c + λu

c (cα − λ)

where Tu,c = Tu | Tu < ∞. Higher moments of Tu,c can be found in a similar
manner, as illustrated in Exercise 6.

Let us now write ϕ(u, δ) as

ϕ(u, δ) =
∫ ∞

0
e−δtω(u, t) dt

and we want to identify ω. Note that

E
[
e−δTu

] = E
[
e−δTu | Tu < ∞]

Pr(Tu < ∞)

+ E
[
e−δTu | Tu = ∞]

Pr(Tu = ∞)

= E[e−δTu,c ]ψ(u).

Further, as e−δTu = e−δTu I (Tu < ∞) (since each side of this equality is e−δTu if
Tu < ∞ and is zero otherwise),

E
[
e−δTu I (Tu < ∞)

] = E
[
e−δTu

] = E[e−δTu,c ]ψ(u),

giving

E[e−δTu,c ] = ϕ(u, δ)

ψ(u)
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so that ϕ(u, δ)/ψ(u) is the Laplace transform of Tu,c. As Tu,c has density func-
tion

1

ψ(u)

∂

∂t
ψ(u, t)

it follows that ω(u, t) = ∂
∂t ψ(u, t).

If we let ζ δ = 1 − Rδ/α then

ϕ(u, δ) = ζ δ exp
{−α

(
1 − ζ δ

)
u
}

= exp{−αu}ζ δ

∞∑
j=0

(
αζ δu

) j

j!

= exp{−αu}
∞∑
j=0

(αu) j

j!

(
1 − Rδ

α

) j+1

.

Further,

1 − Rδ

α
= 1

2cα

(
cα + λ + δ −

√
(cα − λ − δ)2 + 4cδα

)

and as

(cα − λ − δ)2 + 4cδα = (cα + λ + δ)2 − 4cαλ,

we have

ϕ(u, δ) = exp{−αu}
∞∑
j=0

(αu) j

j!

(
cα + λ + δ −

√
(cα + λ + δ)2 − 4cαλ

2cα

) j+1

,

and this Laplace transform can be inverted on a term by term basis. First, we
let s = cα + λ + δ and a = 2

√
cαλ, so that we can write

ϕ(u, δ) = exp{−αu}
2cα

∞∑
j=0

( u

2c

) j

(
s − √

s2 − a2
) j+1

j!
.

Many inversion problems are solved by referring to tables of Laplace transforms,
and if we do this, we find that if

β∗(δ) =
∫ ∞

0
e−δtβ(t) dt =

(
δ −

√
δ2 − a2

)v

then

β(t) = vav

t
Iv(at)



8.6 The time of ruin 177

where

Iv(t) =
∞∑

n=0

(t/2)2n+v

n!(n + v)!

is called a modified Bessel function of order v. Also, we note that for a function
h and a positive constant b,∫ ∞

0
e−δx e−bx h(x) dx = h∗(δ + b).

Applying these two results we deduce that ϕ(u, δ) is the Laplace transform of

ω(u, t) = exp{−αu − (λ + cα)t}
2cαt

×
∞∑
j=0

( u

2c

) j ( j + 1)
(

2
√

cαλ
) j+1

j!
I j+1(2t

√
cαλ).

We can obtain the density of Tu,c, which we denote by ωc(u, t), by dividing
ω(u, t) by ψ(u), giving

ωc(u, t) = exp{−(λ + cα)t − λu/c}
2λt

×
∞∑
j=0

( u

2c

) j ( j + 1)
(

2
√

cαλ
) j+1

j!
I j+1(2t

√
cαλ). (8.27)

We remark that although formula (8.27) appears complicated, it is straightfor-
ward to implement it with mathematical software.

Although this approach does not appear to lead to solutions for the density
of the time to ruin (given that ruin occurs) for other individual claim amount
distributions, the significance of equation (8.27) is that it offers a means of
approximating such densities. The reason for this is that we can approximate a
classical risk process using De Vylder’s method, and for the approximating risk
process the density of the time to ruin is of the form given by equation (8.27).
This idea is explored further in Section 8.6.3.

8.6.2 Application of a discrete time model

Suppose that for some (small) h > 0 we can calculate ψ(u, jh) for j =
1, 2, 3, . . . , and that we can also calculate ψ(u). Then a simple approxima-
tion to the density of Tu,c at jh is

ψ(u, jh) − ψ(u, ( j − 1)h)

hψ(u)
. (8.28)
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Table 8.1 Exact and approximate values of the density of Tu,c,
exponential claims

t Exact Approximate

100 0.001 859 0.001 860
200 0.002 415 0.002 416
300 0.001 827 0.001 829
400 0.001 257 0.001 258
500 0.000 850 0.000 850
600 0.000 576 0.000 576
700 0.000 393 0.000 394
800 0.000 271 0.000 271
900 0.000 189 0.000 189

1000 0.000 132 0.000 133

Using the methods described in Section 7.9.2 we can approximate both finite
and infinite time ruin probabilities, and hence can apply this approximation with
j = 1/[(1 + θ )β].

Table 8.1 shows some exact and approximate values of the density of Tu,c

when u = 40, λ = 1, the individual claim amount distribution is exponential
with mean 1, and c = 1.1. The exact values have been calculated from formula
(8.27), while the approximate values have been calculated using formula (8.28)
and the methods described in Section 7.9.2, with β = 20. The accuracy of this
method could be improved by choosing a larger value of β, but the numbers in
Table 8.1 indicate that this method of calculating the density of Tu,c is reliable,
and in the numerical examples that follow in Section 8.6.3, we refer to the
density calculated by this method as the exact density.

8.6.3 Numerical illustrations

We now illustrate the extension of De Vylder’s method, as described at the
end of Section 8.6.1, by considering two examples. In each case we plot the
density of Tu,c calculated by the approach of the previous section with β = 20,
along with the density of Tu,c in De Vylder’s approximating surplus process.
The advantage of De Vylder’s method is that the density can be calculated
very quickly, in contrast to the numerical approach which is computationally
intensive, but accurate.

As a first illustration we consider the case when the individual claim amount
distribution is a mixed exponential distribution with

F(x) = 1 − 2
3 e−2x − 1

3 e−x/2
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Figure 8.3 Exact and approximate density of Tu,c when F is a mixture of two
exponentials.

for x ≥ 0, so that the distribution has mean 1 and variance 2. Let u = 60, λ = 1
and θ = 0.1, so that ψ(60) = 0.025. (This value was calculated by the method
of Section 7.9.2 with β = 20.) Figure 8.3 shows the exact and approximate
density functions, but they are virtually indistinguishable, showing that the De
Vylder approximation is excellent in this case.

As a second illustration we consider another mixed exponential distribution
as the individual claim amount distribution with

F(x) = 1 − 0.0040e−0.0146x − 0.1078e−0.1902x − 0.8882e−5.5146x

for x ≥ 0. This distribution has mean 1 and variance 42.2. Let u = 400, λ = 1
and θ = 0.25, so that ψ(400) = 0.039. Figure 8.4 shows the exact and approxi-
mate density functions, and in this case we can see that the two density functions
are very close together, but not as close as in Fig. 8.3. In this figure values of
the exact density are greater than those of the approximation for smaller values
of t .

It is interesting that the approximation based on De Vylder’s method per-
forms so well, particularly when De Vylder’s original intention was to approx-
imate a much more straightforward function, namely ψ . The approximation
does not work well in all circumstances, but if the ruin probability is small
(perhaps in the range 1% to 5%) and the moment generating function of the
individual claim amount distribution exists, the method appears to give good
approximations to the density of Tu,c.
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Figure 8.4 Exact and approximate density of Tu,c when F is a mixture of three
exponentials.

8.7 Dividends

We now consider a problem where an insurance portfolio is used to provide
dividend income for that insurance company’s shareholders. Specifically, let
u denote the initial surplus and let b ≥ u be a dividend barrier. Whenever
the surplus attains the level b, the premium income is paid to shareholders as
dividends until the next claim occurs, so that in this modified surplus process,
the surplus never attains a level greater than b. Figure 8.5 shows a realisation
of a surplus process and Fig. 8.6 shows how this realisation would be modified
by the introduction of a dividend barrier. It is straightforward to show (see
Exercise 1) that it is certain that ruin will eventually occur for the modified
surplus process.

Let us assume that the shareholders provide the initial surplus u and pay the
deficit at ruin. A question of interest is how should the level of the barrier b
be chosen to maximise the expected present value of net income to the share-
holders, assuming that there is no further business after the time of ruin. We
define V (u, b) to be the expected present value at force of interest δ of dividends
payable to shareholders prior to ruin, Yu,b to be the deficit at ruin and Tu,b to be
the time of ruin, so that E

[
Yu,b exp{−δTu,b}

]
gives the expected present value

of the deficit at ruin. Then we want to choose b such that

L(u, b) = V (u, b) − E
[
Yu,b exp{−δTu,b}

] − u
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Figure 8.5 A realisation of a surplus process.
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Figure 8.6 The realisation of the surplus process in Fig. 8.5 modified by the intro-
duction of a dividend barrier.

is maximised, and to address this question we must consider the components
of L(u, b).

We can find an expression for V (u, b) by the standard technique of condi-
tioning on the time and the amount of the first claim. We note that for u < b,
if no claim occurs before time τ = (b − u)/c, then the surplus process attains
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level b at time τ . Thus, for 0 ≤ u < b,

V (u, b) = e−(λ+δ)τ V (b, b) +
∫ τ

0
λe−(λ+δ)t

∫ u+ct

0
f (x) V (u + ct − x, b) dx dt.

Substituting s = u + ct we obtain

V (u, b)=e−(λ+δ)(b−u)/cV (b, b) + λ

c

∫ b

u
e−(λ+δ)(s−u)/c

∫ s

0
f (x) V (s − x, b) dx ds

and differentiating with respect to u we get

∂

∂u
V (u, b) = λ + δ

c
V (u, b) − λ

c

∫ u

0
f (x)V (u − x, b) dx . (8.29)

Similarly, by considering dividend payments before and after the first claim,
we have

V (b, b) =
∫ ∞

0
λe−(λ+δ)t cs̄t dt +

∫ ∞

0
λe−(λ+δ)t

∫ b

0
f (x)V (b − x, b) dx dt

(8.30)

where s̄t = (eδt − 1)/δ is the accumulated amount at time t at force of interest
δ of payments at rate 1 per unit time over (0, t). Integrating out in equation
(8.30) we obtain

V (b, b) = c

λ + δ
+ λ

λ + δ

∫ b

0
f (x)V (b − x, b) dx . (8.31)

From equation (8.29) we find that

c

λ + δ

∂

∂u
V (u, b)

∣∣∣∣
u=b

= V (b, b) − λ

λ + δ

∫ b

0
f (x)V (b − x, b) dx

which, together with equation (8.31), gives the boundary condition

∂

∂u
V (u, b)

∣∣∣∣
u=b

= 1.

Example 8.4 Let F(x) = 1 − e−αx , x ≥ 0. Find an expression for V (u, b).

Solution 8.4 Writing equation (8.29) as

∂

∂u
V (u, b) = λ + δ

c
V (u, b) − λ

c

∫ u

0
αe−α(u−x)V (x, b) dx (8.32)

we can follow the technique used in previous examples involving exponential
claims to obtain the second order differential equation

∂2

∂u2
V (u, b) +

(
α − λ + δ

c

)
∂

∂u
V (u, b) − αδ

c
V (u, b) = 0.
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As the characteristic equation of this differential equation is the same as that
of equation (8.23), it follows that

V (u, b) = γ 1eρδu + γ 2e−Rδu (8.33)

where ρδ and −Rδ are the roots of equation (8.24), γ 1 and γ 2 depend on both
δ and b, and the boundary condition gives

γ 1ρδeρδb − γ 2 Rδe−Rδb = 1.

We can now insert the functional form (8.33) of V (u, b) into equation (8.32)
as in our derivation of ϕ in the previous section, and the arguments used there
yield

γ 1

γ 2
= − α + ρδ

α − Rδ

and so

V (u, b) = (α + ρδ)eρδu − (α − Rδ)e−Rδu

(α + ρδ)ρδeρδb + (α − Rδ)Rδe−Rδb
.

Now let ϕb(u) = E
[
Yu,b exp{−δTu,b}

]
. Then, by again considering the time

and the amount of the first claim, and whether or not the first claim occurs
before time τ , we obtain

ϕb(u) =
∫ τ

0
λe−(λ+δ)t

∫ ∞

u+ct
(y − u − ct) f (y) dy dt

+
∫ ∞

τ

λe−(λ+δ)t
∫ ∞

b
(y − b) f (y) dy dt

+
∫ τ

0
λe−(λ+δ)t

∫ u+ct

0
f (y)ϕb(u + ct − y) dy dt

+
∫ ∞

τ

λe−(λ+δ)t
∫ b

0
f (y)ϕb(b − y) dy dt,

which leads to

ce−(λ+δ)u/cϕb(u) =
∫ b

u
λe−(λ+δ)s/c

∫ ∞

s
(y − s) f (y) dy ds

+
∫ ∞

b
λe−(λ+δ)s/c

∫ ∞

b
(y − b) f (y) dy ds

+
∫ b

u
λe−(λ+δ)s/c

∫ s

0
f (y)ϕb(s − y) dy ds

+
∫ ∞

b
λe−(λ+δ)s/c

∫ b

0
f (y)ϕb(b − y) dy ds
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after making the standard substitution s = u + ct . Differentiation then
leads to

∂

∂u
ϕb(u) = δ + λ

c
ϕb(u) − λ

c

∫ ∞

u
(y − u) f (y) dy − λ

c

∫ u

0
f (y)ϕb(u − y) dy.

(8.34)

Further,

ϕb(b) =
∫ ∞

0
λe−(λ+δ)t

[∫ ∞

b
(y − b) f (y) dy +

∫ b

0
f (y)ϕb(b − y) dy

]
dt

= λ

λ + δ

[∫ ∞

b
(y − b) f (y) dy +

∫ b

0
f (y)ϕb(b − y) dy

]

and as equation (8.34) yields

ϕb(b) = c

δ + λ

∂

∂u
ϕb(u)

∣∣∣∣
u=b

+ λ

δ + λ

[∫ ∞

b
(y − b) f (y) dy +

∫ b

0
f (y)ϕb(b − y) dy

]

we obtain the boundary condition

∂

∂u
ϕb(u)

∣∣∣∣
u=b

= 0.

Example 8.5 Let F(x) = 1 − e−αx , x ≥ 0. Find an expression for ϕb(u).

Solution 8.5 Proceeding as in the solution to Example 8.4, we obtain

∂

∂u
ϕb(u) = δ + λ

c
ϕb(u) − λ

c

∫ ∞

u
(y − u)αe−αydy − λ

c

∫ u

0
αe−α(u−y)ϕb(y) dy

(8.35)

and hence

∂2

∂u2
ϕb(u) +

(
α − λ + δ

c

)
∂

∂u
ϕb(u) − αδ

c
ϕb(u) = 0.

It therefore follows that

ϕb(u) = η1eρδu + η2e−Rδu (8.36)

where once again ρδ and −Rδ are the roots of equation (8.24), and η1 and η2

depend on both δ and b. Continuing as in the solution to Example 8.4, insertion
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of the functional form (8.36) of ϕb(u) into equation (8.35) yields

1

α
= η1α

α + ρδ

+ η2α

α − Rδ

(8.37)

and the boundary condition gives

η1ρδeρδb − η2 Rδe−Rδb = 0,

so that

η1

η2
= Rδe−Rδb

ρδeρδb
.

Division of equation (8.37) by η2 leads to

η2 = 1

α2

(α + ρδ)(α − Rδ)ρδeρδb

(α + ρδ)ρδeρδb + (α − Rδ)Rδe−Rδb

and as

1

α
(α + ρδ)(α − Rδ) = λ

c

(since ρδ Rδ = αδ/c and Rδ − ρδ = α − (λ + δ)/c) we have

ϕb(u) = λ

αc

ρδeρδb−Rδu + Rδe−Rδb+ρδu

(α + ρδ)ρδeρδb + (α − Rδ)Rδe−Rδb
.

For the remainder of this section let us assume that the individual claim
amount distribution is exponential with mean 1/α, so that we have an explicit
solution for L(u, b). Taking the derivative of L(u, b) with respect to b we find
after some simplification that

∂

∂b
L(u, b) = −(α + ρδ)eρδu + (α − Rδ)e−Rδu(

(α + ρδ)ρδeρδb + (α − Rδ)Rδe−Rδb
)2

× (
(α + ρδ)ρ2

δeρδb − (α − Rδ)R2
δ e−Rδb

)
+ λ

αc

ρδ Rδ

(
ρδ + Rδ

)
e(ρδ−Rδ )b

(
(α + ρδ)eρδu − (α − Rδ)e−Rδu

)
(
(α + ρδ)ρδeρδb + (α − Rδ)Rδe−Rδb

)2

and it is straightforward to show that this partial derivative is zero when

(α + ρδ)ρ2
δeρδb − (α − Rδ)R2

δ e−Rδb = λ

αc

(
ρδ Rδ

(
ρδ + Rδ

)
e(ρδ−Rδ)b

)
.

(8.38)
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Figure 8.7 L(u, b) for different values of u.

The solution to equation (8.38) is the optimal barrier level under our criterion
of maximising the expected present value of net income to the shareholders.
Strictly, we have not proved this, and we should consider the second derivative
of L(u, b). Figure 8.7 illustrates L(u, b) for a range of values of b when α = 1,
λ = 100, c = 110 and δ = 0.1, resulting in ρδ = 0.00917 and Rδ = 0.09917.
As is clear from equation (8.38), the optimal barrier level is independent of u,
and as equation (8.38) becomes

0.0088eρδb − 0.885 89e−Rδb = 0.008 95e(ρδ−Rδ)b

the optimal barrier is 43.049.

8.8 Notes and references

Section 8.3 is based on Gerber et al. (1987) and Willmot and Lin (1998). The
maximum severity of ruin is discussed in Picard (1994), while Section 8.5 is
based on Dickson (1992). The method of finding the Laplace transform of the
time of ruin follows from Gerber and Shiu (1998), while the inversion in Section
8.6.1 is due to Drekic and Willmot (2003). For an alternative approach (and
solution) to the inversion problem, see Dickson et al. (2003). The numerical
approach to finding the density of the time of ruin is discussed by Dickson and
Waters (2002). Section 8.7 is based on ideas discussed in Gerber (1979) and
extended in Dickson and Waters (2004). For a discussion of other advanced
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topics in ruin theory, see Asmussen (2000) or Rolski et al. (1999). The concept
of dual events is discussed by Feller (1966), while tables of Laplace Transforms
can be found in Schiff (1999).

8.9 Exercises

1. Let ξ r (u, b) denote the probability of ultimate ruin from initial surplus u
when there is a reflecting barrier at b ≥ u (so that when the surplus
process reaches level b, it remains there until a claim occurs). Show that

ξ r (b, b) =
∫ b

0
ξ r (b − x, b) f (x) dx + 1 − F(b)

and use the fact that ξ r (u, b) ≥ ξ r (b, b) to show that ξ r (u, b) = 1 for
0 ≤ u ≤ b.

2. An aggregate claims process is a compound Poisson process with Poisson
parameter λ, and the individual claim amount density is f (x) = exp{−x}
for x > 0. The insurer initially calculates its premium with a loading
factor of 0.2. However, when the insurer’s surplus reaches level b > u, the
loading factor will reduce to 0.1 and will remain at that level thereafter.
Calculate the probability of ultimate ruin when u = 10 and b = 20.

3. By conditioning on the time and the amount of the first claim show that

∂

∂u
G(u, y) = λ

c
G(u, y) − λ

c

∫ u

0
G(u − x, y) f (x) dx − λ

c

∫ u+y

u
f (x) dx .

By integrating this equation over (0, w) show that

G(w, y) = λ

c

∫ w

0
G(w − x, y) (1 − F(x)) dx + λ

c

∫ w+y

w

(1 − F(x)) dx .

4. Show that the density of |U (Tu)| | Tu < ∞, that is g(u, y)/ψ(u), in
Example 8.2 can be written as a weighted average of an exponential
density and an Erlang(2) density, where the weights depend on u.
Calculate the value of these weights for u = 0, 1, 2, . . . , 5. What
conclusion can be drawn from these calculations?

5. Let the individual claim amount distribution be exponential with mean
1/α. Given that ruin occurs find an expression for the probability that the
maximum severity of ruin occurs at the time of ruin.
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6. Let F(x) = 1 − e−αx , x ≥ 0. Use equation (8.24) to show that

R′
δ = α − Rδ

2cRδ − cα + λ + δ
.

Differentiate this to find an expression for R′′
δ and hence show that

R′′
0 = −2αλ

(αc − λ)3 .

Hence show that

E
[
T 2

u,c

] = 2c3α + 2cλ(2cα − λ)u + λ2(cα − λ)u2

c2(cα − λ)3
.

7. Lundberg’s fundamental equation is

λ + δ − cs = λ f ∗(s). (8.39)

(a) Show that when δ > 0 there is a unique positive root of this equation,
and that this root goes to 0 as δ goes to 0.

(b) Show that when f (x) = αe−αx , x > 0, then equation (8.39) is the
same as equation (8.24).

8. Let

ϕ∗(s, δ) =
∫ ∞

0
e−suϕ(u, δ) du.

(a) By taking the Laplace transform of equation (8.21) show that

ϕ∗(s, δ) = 1

s

λ − λ f ∗(s) − csϕ(0, δ)

λ + δ − cs − λ f ∗(s)
.

(b) Deduce that

ϕ(0, δ) = ψ(0)k∗(ρδ)

where ρδ is the unique positive root of Lundberg’s fundamental
equation, and k is given by equation (8.1).

(c) Show that

E
[
T0,c

] = m2

2m1(c − λm1)
.

9. Consider the dividends problem of Section 8.7 and let the initial surplus
be b, so that dividends are payable immediately and this dividend stream
ceases at the time of the first claim.
(a) What is the distribution of the amount of dividends in the first

dividend stream?
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(b) Let N denote the number of dividend streams. Show that

Pr(N = r ) = p(b)r−1 (1 − p(b))

for r = 1, 2, 3, . . . where

p(b) =
∫ b

0
f (x)χ (b − x, b) dx .

(c) Find the moment generating function of the total amount of dividends
payable until ruin, and hence deduce that the distribution of the total
amount of dividends payable until ruin is exponential with mean

c

λ(1 − p(b))
.

(d) Suppose instead that the initial surplus is u < b. Show that the
distribution of the number of dividend streams is zero-modified
geometric and that the distribution of the total amount of dividends
payable until ruin is a mixture of a degenerate distribution at zero and
the exponential distribution in (c).



9

Reinsurance

9.1 Introduction

In this chapter we consider optimal reinsurance from an insurer’s point of view,
and illustrate two different approaches to the problem. First, in Section 9.2 we
illustrate how utility theory can be applied to determine the optimal retention
level under both proportional and excess of loss reinsurance. Second, in Section
9.3 we apply ideas from ruin theory to find not only optimal retention levels,
but also the optimal type of reinsurance under certain conditions.

9.2 Application of utility theory

In this section we consider two results relating to optimal retention levels given a
particular type of reinsurance arrangement. Throughout this section we assume
that an insurer makes decisions on the basis of the exponential utility function
u(x) = − exp{−βx} where β > 0. We consider a (reinsured) risk over a one-
year period, so that the insurer’s wealth at the end of the year is

W + P − PR − SI

where W is the insurer’s wealth at the start of the year, P is the premium the
insurer receives to cover the risk, PR is the amount of the reinsurance premium,
and SI denotes the amount of claims paid by the insurer net of reinsurance.
Our objective is to find the retention level that maximises the insurer’s ex-
pected utility of year end wealth. As neither W nor P depends on the retention
level, and as we are applying an exponential utility function, our objective is to
maximise

− exp{β PR}E
[
exp{βSI }

]
.

190
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Finally, we assume that aggregate claims from the risk (before reinsurance)
have a compound Poisson distribution with Poisson parameter λ and continuous
individual claim amount distribution F such that F(0) = 0.

9.2.1 Proportional reinsurance

Let us assume that the insurer effects proportional reinsurance and pays pro-
portion a of each claim, and that the reinsurance premium is calculated by the
exponential principle with parameter A. From Section 4.4.1, aggregate claims
for the reinsurer have a compound Poisson distribution with Poisson parameter
λ and with individual claim amounts distributed as (1 − a)X where X ∼ F .
Thus, by formula (3.2), the reinsurance premium is

PR = λ

A

(∫ ∞

0
e(1−a)Ax f (x) dx − 1

)
.

Similarly, as SI has a compound Poisson distribution with Poisson parameter
λ and with individual claim amounts distributed as aX ,

E
[
exp{βSI }

] = exp

{
λ

(∫ ∞

0
eaβx f (x) dx − 1

)}

and hence

− exp{β PR}E
[
exp{βSI }

] = − exp

{
λβ

A

(∫ ∞

0
e(1−a)Ax f (x) dx − 1

)

+ λ

(∫ ∞

0
eaβx f (x) dx − 1

)}
.

Finding a to maximise this expression is the same as finding a to minimise h(a)
where

h(a) = λβ

A

∫ ∞

0
e(1−a)Ax f (x) dx + λ

∫ ∞

0
eaβx f (x) dx

= λ

∫ ∞

0

(
A−1βe(1−a)Ax + eaβx

)
f (x) dx .

Differentiation gives

d

da
h(a) = λ

∫ ∞

0

(−xβe(1−a)Ax + βxeaβx
)

f (x) dx

and this equals 0 when

(1 − a)A = aβ
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or

a = A

A + β
.

Further, as

d2

da2
h(a) = λ

∫ ∞

0

(
Ax2βe(1−a)Ax + β2x2eaβx

)
f (x) dx > 0,

h(a) has a minimum when a = A/(A + β), and hence the insurer’s expected
utility of year end wealth is maximised by this value of a.

An interesting feature of this result is that the optimal retention level is inde-
pendent of the individual claim amount distribution, and depends only on the
parameter of the insurer’s utility function and the parameter of the reinsurance
premium principle. If we consider a as a function of A, we see that a is an
increasing function of A. As A is the reinsurer’s coefficient of risk aversion,
the more risk averse the reinsurer is, the greater the reinsurance premium is,
and as the cost of reinsurance increases it is natural for the insurer to retain a
greater part of the risk. Similarly, if we consider a as a function of β, we see
that a is a decreasing function of β. This also makes sense intuitively as β is the
insurer’s coefficient of risk aversion. Thus, the result says that as the insurer’s
risk aversion increases, the insurer’s share of each claim decreases.

9.2.2 Excess of loss reinsurance

Let us now assume that the insurer effects excess of loss reinsurance with
retention level M and that the reinsurance premium is calculated by the expected
value principle with loading θ , so that

PR = (1 + θ )λ
∫ ∞

M
(x − M) f (x) dx .

From Section 4.4.2 it follows that SI has a compound Poisson distribution
with Poisson parameter λ and with individual claim amounts distributed as
min(X, M) where X ∼ F . Thus,

E
[
exp{βSI }

] = exp

{
λ

(∫ M

0
eβx f (x) dx + eβM (1 − F(M)) − 1

)}

and so

− exp{β PR}E
[
exp{βSI }

]
= − exp

{
(1 + θ )λβ

∫ ∞

M
(x − M) f (x) dx

}

× exp

{
λ

(∫ M

0
eβx f (x) dx + eβM (1 − F(M)) − 1

)}
.
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Proceeding as in the previous section, finding M to maximise this expression
is equivalent to finding M to minimise g(M) where

g(M) = (1 + θ )λβ

∫ ∞

M
(x − M) f (x) dx

+ λ

(∫ M

0
eβx f (x) dx + eβM (1 − F(M))

)
.

Differentiation gives

d

d M
g(M) = −(1 + θ )λβ

∫ ∞

M
f (x) dx + λβeβM (1 − F(M))

= λβ (1 − F(M))
(
eβM − 1 − θ

)
and this equals 0 when

M = 1

β
log(1 + θ ). (9.1)

Further,

d2

d M2
g(M) = −λβ f (M)

(
eβM − 1 − θ

) + λβ2 (1 − F(M)) eβM

and this second derivative is positive when M = β−1 log(1 + θ ), so that this
value of M minimises g(M) and hence maximises the insurer’s expected utility
of year-end wealth.

As in the previous section, we find that the optimal retention level depends
on the parameter of the insurer’s utility function and on the parameter of the
reinsurer’s premium calculation principle, but does not depend on the individ-
ual claim amount distribution. If we consider the optimal retention level as a
function of θ , then we see that M is an increasing function of θ . This sim-
ply states that as the price of reinsurance increases, the insurer should retain
a greater share of each claim. Similarly, if we consider the optimal retention
level as a function of β, we see that M is a decreasing function of β, and the
intuitive explanation of this is the same as in the case of proportional reinsur-
ance.

9.2.3 Comments on the application of utility theory

The above results for optimal retention levels are based on a single period
analysis. Although they are intuitively appealing, they also have limitations. As
the analysis is based on an exponential utility function, the premium that the
insurer receives to cover the risk does not affect the decision. However, if we
assume that the reinsurance premium is paid from the premium income that
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the insurer receives, then it seems unreasonable that the premium income does
not affect the decision. This point is addressed in the next section where we
consider the effect of reinsurance on a surplus process.

We remark that in Sections 9.2.1 and 9.2.2 the reinsurance premiums are
calculated by different premium principles. These principles provide solutions
for optimal retention levels that are expressed in simple forms in terms of the
parameter of the utility function and the parameter of the (reinsurance) premium
principle, and are thus suitable to illustrate points. However, other premium
principles can equally be used for the reinsurance premium, and some of these
are illustrated in the exercises at the end of this chapter.

9.3 Reinsurance and ruin

Under the classical risk model, the surplus process {U (t)}t≥0 is given by

U (t) = u + ct −
N (t)∑
i=1

Xi .

If the insurer effects reinsurance by paying a reinsurance premium continuously
at a constant rate, then this process becomes a net of reinsurance surplus process
{U∗(t)}t≥0 given by

U ∗(t) = u + c∗t −
N (t)∑
i=1

X∗
i

where c∗ denotes the insurer’s premium income per unit time net of reinsurance,
and X∗

i denotes the amount the insurer pays on the i th claim, net of reinsur-
ance. For this risk process, the net of reinsurance adjustment coefficient exists
provided that c∗ > λE

[
X∗

1

]
and MX∗

1
exists, and is the unique positive number

R∗ such that

λ + c∗ R∗ = λE
[
exp{R∗ X∗

1}
]
.

Further, the insurer’s ultimate ruin probability is bounded above by exp{−R∗u}.
In general, it is difficult to obtain analytic solutions for the probability of

ultimate ruin when there is reinsurance. However, it is usually possible to solve
for the net of reinsurance adjustment coefficient. In the following sections we
therefore consider maximising the net of reinsurance adjustment coefficient,
since by doing this we minimise Lundberg’s upper bound for the ultimate ruin
probability. First, we consider the optimal type of reinsurance arrangement in
terms of maximising the net of reinsurance adjustment coefficient. Then we
consider the situation under both proportional and excess of loss reinsurance.
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9.3.1 The optimal type of reinsurance

In this section we show that under certain assumptions the optimal type of
reinsurance is excess of loss. In what follows, let X denote the amount of an
individual claim, with X ∼ F and F(0) = 0, and let h denote a reinsurance
arrangement, so that when a claim of amount x occurs, the insurer pays h(x)
where 0 ≤ h(x) ≤ x . So, for example, under proportional reinsurance h(x) =
ax where 0 ≤ a ≤ 1. Our objective is to compare excess of loss reinsurance
with retention level M , under which the insurer pays min(X, M) when a claim
occurs, with any reinsurance arrangement given by a rule h.

In order to make the comparison valid, we first assume that

E [min(X, M)] = E [h(X )] . (9.2)

This assumption says that given a reinsurance arrangement h, it is possible to
arrange excess of loss reinsurance such that the mean individual claim amount,
net of reinsurance, is the same under each reinsurance arrangement. Our second
assumption is that the insurer’s premium income per unit time, net of reinsur-
ance, is given by

c∗ = (1 + θ )λE [X ] − (1 + θ R)λE [X − h(X )] , (9.3)

with

c∗ > λE[h(X )]. (9.4)

Note that c∗ is just the difference between the premium the insurer receives to
cover the risk and the reinsurance premium, and that each of these premiums
is calculated by the expected value principle. In the following we assume that
θ R ≥ θ > 0. In the case when θ R = θ , it is clear that c∗ > λE[h(X )]. When
θ R > θ , condition (9.4) ensures that the net adjustment coefficient exists, pro-
vided, of course, that the relevant moment generating function exists. An im-
portant point to note about equation (9.3) is that the cost of reinsurance is the
same, regardless of the type of reinsurance effected, which follows by equality
(9.2) and because h represents any reinsurance arrangement.

Now let Rh denote the net adjustment coefficient under a reinsurance ar-
rangement given by a rule h, so that

λ + c∗ Rh = λE
[
exp{Rhh(X )}] = λ

∫ ∞

0
exp{Rhh(x)} f (x) dx

and let Re denote the net adjustment coefficient under an excess of loss rein-
surance arrangement with retention level M , so that

λ + c∗ Re = λE
[
exp{Re min(X, M)}]

= λ

(∫ M

0
exp{Rex} f (x) dx + exp{Re M} (1 − F(M))

)
. (9.5)
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Rh Re

g1(r)

g2(r )

0

r

Figure 9.1 Functions g1 and g2 giving Re ≥ Rh .

Then, under the assumptions of this section, excess of loss reinsurance is optimal
in the sense that under this form of reinsurance the net adjustment coefficient
is maximised, that is Re ≥ Rh .

To prove that Re ≥ Rh it is sufficient to consider functions g1 and g2 de-
fined as

g1(r ) = λ

∫ ∞

0
exp{rh(x)} f (x) dx − λ − c∗r

and

g2(r ) = λ

(∫ M

0
exp{r x} f (x) dx + exp{r M} (1 − F(M))

)
− λ − c∗r.

Then, as shown in Fig. 9.1, if g1(r ) ≥ g2(r ) for all r ≥ 0, then Re ≥ Rh .
Now let

ε(y) =
{

y if 0 ≤ y ≤ M
M if y > M

so that ε gives the insurer’s payment, net of reinsurance, on a claim under excess
of loss reinsurance with retention level M .

A key step in proving that Re ≥ Rh is that ez ≥ 1 + z for all z. This implies
that

exp {r (h(x) − ε(x))} ≥ 1 + r (h(x) − ε(x)) ,



9.3 Reinsurance and ruin 197

or, alternatively,

exp {rh(x)} ≥ exp {rε(x)} + r exp {rε(x)} (h(x) − ε(x)) .

Consequently, we have∫ ∞

0
exp{rh(x)} f (x) dx ≥

∫ ∞

0
exp{rε(x)} f (x) dx

+ r
∫ ∞

0
exp{rε(x)} (h(x) − ε(x)) f (x) dx .

It then follows that Re ≥ Rh if∫ ∞

0
exp{rε(x)} (h(x) − ε(x)) f (x) dx ≥ 0. (9.6)

To see that (9.6) is indeed true, note that∫ ∞

0
exp{rε(x)} (h(x)−ε(x)) f (x) dx =

∫ M

0
exp{rε(x)} (h(x) − ε(x)) f (x) dx

+
∫ ∞

M
exp{rε(x)} (h(x)−ε(x)) f (x) dx.

Further,∫ M

0
exp{rε(x)} (h(x) − ε(x)) f (x) dx ≥

∫ M

0
exp{r M} (h(x) − ε(x)) f (x) dx .

This follows since for x ∈ [0, M], h(x) ≤ x = ε(x), so that h(x) − ε(x) ≤ 0,
and since exp{r M} ≥ exp{rε(x)} in this interval. Hence∫ ∞

0
exp{rε(x)} (h(x) − ε(x)) f (x) dx ≥ exp{r M}

∫ ∞

0
(h(x) − ε(x)) f (x) dx

= exp{r M} (E[h(X )] −E[min(X, M)])

= 0,

where the final step follows by equation (9.2). Thus∫ ∞

0
exp{rh(x)} f (x) dx ≥

∫ ∞

0
exp{rε(x)} f (x) dx

and hence Re ≥ Rh .
A key assumption in the proof that Re ≥ Rh is that the cost of reinsurance is

the same regardless of the type of reinsurance effected. This assumption may
not always be borne out in practice. To see why this is the case, let us consider
a risk for which the Poisson parameter is λ and the individual claim amount
distribution is exponential with mean 1. Suppose that θ = 0.2 and θ R = 0.25,
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and that the insurer can effect proportional reinsurance, retaining 80% of each
claim. Then

c∗ = λ
(
1.2 − (1.25 × 0.2)

) = 0.95λ

and as the individual claim amount distribution net of reinsurance is exponential
with mean 0.8, from Example 7.1 we know that the net of reinsurance adjustment
coefficient is

1

0.8
− λ

c∗ = 0.1974.

If we now consider an excess of loss reinsurance arrangement with retention
level M where M is such that the insurer’s expected payment on an individ-
ual claim net of reinsurance is 0.8 (the same as under the above proportional
arrangement), then ∫ M

0
xe−x dx + Me−M = 0.8

which gives 1 − e−M = 0.8 and hence M = 1.6094. Still assuming that
θ = 0.2 and θ R = 0.25, the insurer’s net of reinsurance adjustment coefficient
Re satisfies

λ + c∗ Re = λ

(∫ M

0
eRe x e−x dx + eRe M e−M

)

and as c∗ = 0.95λ we find that Re satisfies the equation

1 + 0.95Re = 1 − Ree−(1−Re)M

1 − Re
= 1 − Re0.2(1−Re)

1 − Re

where the second identity follows since e−M = 0.2. This equation can be solved
numerically, giving Re = 0.2752, so that, as expected, the adjustment coeffi-
cient is greater under the excess of loss arrangement.

Table 9.1 shows the mean and variance of aggregate claims net of reinsur-
ance for the insurer under each of the above reinsurance arrangements, as well
as the mean and variance of aggregate claims for the reinsurer. It is clear from

Table 9.1 Mean and variance of aggregate claims payments

Insurer Reinsurer

Mean Variance Mean Variance

Proportional 0.8λ 1.28λ 0.2λ 0.08λ
Excess of Loss 0.8λ 0.9562λ 0.2λ 0.4λ
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this table that excess of loss reinsurance is better from the insurer’s point of
view. Not only does this arrangement give the larger net of reinsurance adjust-
ment coefficient, it also gives the same mean and a smaller variance for net
aggregate claims. In contrast, from the reinsurer’s point of view, the excess of
loss arrangement results in a much greater variance of aggregate claims than the
proportional arrangement does. Consequently, the reinsurer may view excess
of loss reinsurance as more risky, and may therefore set a higher value of θ R

for excess of loss reinsurance than for proportional reinsurance.

9.3.2 Proportional reinsurance

We now consider the situation when the insurer effects proportional reinsurance
and pays proportion a of each claim. Then the insurer’s net of reinsurance
premium income per unit time is

c∗ = (1 + θ )λE [X ] − (1 + θ R)λ(1 − a)E [X ]

= (1 + θ − (1 + θ R)(1 − a)) λE[X ],

and condition (9.4) becomes c∗ > λaE[X ]. Thus we require that

(1 + θ − (1 + θ R)(1 − a)) > a,

which gives

a > 1 − θ/θ R . (9.7)

Thus, the insurer must retain more than proportion 1 − θ/θ R of each claim to
avoid ultimate ruin. However, when θ = θ R , the proportion retained can be zero,
as in this case the insurer can use the premium income it receives to reinsure
the entire risk. When θ < θ R , the insurer can pay the reinsurance premium out
of its premium income provided that

(1 + θ )λE [X ] > (1 + θ R)λ(1 − a)E [X ] ,

and this condition translates to

a >
θ R − θ

1 + θ R
.

However, when θ < θ R,

1 − θ/θ R >
θ R − θ

1 + θ R

and so equation (9.7) specifies the crucial condition.



200 Reinsurance

0

2

4

6

8

10

12

14

Proportion retained, a

R(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9.2 R(a) when θ = θ R = 0.2.

Example 9.1 Let the individual claim amount distribution be exponential with
mean 1, and let θ = θ R = 0.2. Plot the net of reinsurance adjustment coefficient
as a function of the proportion retained, a.

Solution 9.1 In this case c∗ = 1.2λa, and so from Example 7.1, the net of
reinsurance adjustment coefficient, denoted R(a), is

R(a) = 1

a
− λ

c∗ = 1

6a
. (9.8)

Figure 9.2 shows R(a) as a function of a.

In the above example, the reinsurance arrangement is effectively a risk shar-
ing arrangement with the premium income and claims being shared in the same
proportion by the insurer and the reinsurer. We can see that in equation (9.8),
lima→0+ R(a) = ∞. When a = 0, the insurer has neither claims nor premium
income, and hence the process {U ∗(t)}t≥0 is constant and equal to u for all t ,
and the ultimate ruin probability is 0.

Example 9.2 Let the individual claim amount distribution be exponential with
mean 1, and let θ = 0.2 and θ R = 0.25. Find the value of a that maximises the
insurer’s net of reinsurance adjustment coefficient.

Solution 9.2 We now have c∗ = (1.25a − 0.05) λ, and condition (9.7) states
that a should exceed 0.2. Hence we must consider the net of reinsurance
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Figure 9.3 R(a) when θ = 0.2 and θ R = 0.25.

adjustment coefficient, R(a), for a ∈ (0.2, 1]. From Example 7.1,

R(a) = 1

a
− λ

c∗ = 1

a
− 1

1.25a − 0.05

= 0.25a − 0.05

a(1.25a − 0.05)
.

Differentiation gives

R′(a) = −0.3125a2 + 0.125a − 0.0025

a2(1.25a − 0.05)2

so that R′(a) = 0 when

0.3125a2 − 0.125a + 0.0025 = 0,

that is when a = 0.0211 and a = 0.3789. As only the latter value lies within
the interval of interest, we conclude that R(a) is maximised when a = 0.3789
since R(0.2) = 0, R(0.3789) = 0.2786 and R(1) = 0.1667.

Figure 9.3 shows R(a) from the above example. From this figure we note that
there is a range of values for a that gives a higher value for the net adjustment
coefficient than when there is no reinsurance. We also note that the same value
for R(a) can occur for two different values of a. For example, R(a) = 0.25
when a = 0.2919 and when a = 0.5480. In forming a choice between these
two particular retention levels we would have to apply a different criterion to
that of maximising the net adjustment coefficient. An obvious criterion to adopt



202 Reinsurance

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.75 0.8 0.85 0.9 0.95 1

Retention level, a

R(a)

Figure 9.4 R(a) when θ = 0.05 and θ R = 0.25.

would be to choose the retention level which gives the greater expected profit,
and this is achieved when a = 0.5480. This follows since the insurer’s expected
profit per unit time is

c∗ − aλE[X ] = (θ − θ R(1 − a)) λE[X ]

which is clearly an increasing function of a.
Figures 9.2 and 9.3 illustrate two possible shapes that the net of reinsurance

adjustment coefficient can take as a function of the proportion retained, a. A
third possible shape is that R(a) is an increasing function of a. For example, if
we change the value of θ in Example 9.2 from 0.2 to 0.05, then we find that

R(a) = 1

a
− 1

1.25a − 0.2

for a ∈ (0.8, 1], and this function is shown in Fig. 9.4. In this case the cost of
reinsurance outweighs the reduction in claim variability caused by reinsurance.
In particular, the insurer’s premium loading factor, net of reinsurance, is small.
This net loading factor can be calculated by writing c∗ as (1 + θ N )aλE[X ]
where θ N is the net loading factor. Thus,

c∗ = (1 + θ − (1 + θ R)(1 − a)) λE[X ] = (1 + θ N )aλE[X ]

yields

θ N = θ R − θ R − θ

a
.
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Table 9.2 Optimal proportions retained

θ = 0.1, θ R = 0.15 θ = 0.1, θ R = 0.2 θ = 0.2, θ R = 0.3

u = 20 0.6547 0.9799 0.6356
u = 40 0.6494 0.9680 0.6306
u = 60 0.6476 0.9641 0.6290
u = 80 0.6468 0.9622 0.6281
u = 100 0.6462 0.9610 0.6276
R(a) 0.6442 0.9564 0.6257

Thus, when θ R = θ , θ N = θ , and when θ R > θ , θ N increases with a. In par-
ticular, when θ = 0.05 and θ R = 0.25, θ N increases from 0 when a = 0.8 to
0.05 = θ when a = 1.

In all our numerical illustrations so far in this section, we have considered
exponential individual claim amounts, where the mean individual claim amount
is 1. For this individual claim amount distribution it follows from formula (7.11)
that under proportional reinsurance with proportion retained a, the ultimate ruin
probability for the process {U ∗(t)}t≥0 is

λa

c∗ exp

{
−

(
1

a
− λ

c∗

)
u

}
(9.9)

which can be treated as a function of a. In particular, we can find the value of
a that minimises this ultimate ruin probability for a given value of u. Table 9.2
shows values of a that minimise expression (9.9) for a range of values of u and
different combinations of θ and θ R . In the final row of the table, the value of a
that maximises R(a) is shown. From these values we can say that choosing a
to maximise the net of reinsurance adjustment coefficient is a reasonable proxy
to choosing a to minimise the ultimate ruin probability, at least for large values
of u.

9.3.3 Excess of loss reinsurance

We now consider the situation when the insurer effects excess of loss reinsurance
with retention level M . In this case the same ideas that apply to proportional
reinsurance also apply. To illustrate ideas, for the remainder of this section let
the individual claim amount distribution be exponential with mean 1. Then

c∗ = (1 + θ )λ − (1 + θ R)λ
∫ ∞

M
(x − M)e−x dx

= λ
(
1 + θ − (1 + θ R)e−M

)
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and condition (9.7) gives

λ
(
1 + θ − (1 + θ R)e−M

)
> λ

(∫ M

0
xe−x dx + Me−M

)
= λ

(
1 − e−M

)
,

which leads to M > log(θ R/θ ) as the condition for the minimum reten-
tion level. Further, the net of reinsurance premium loading factor is given
by

c∗ = (1 + θ N )λ
(
1 − e−M

) = λ
(
1 + θ − (1 + θ R)e−M

)
which gives

θ N = θ − θ Re−M

1 − e−M
,

and θ N increases from 0 when M = log(θ R/θ ) to θ as M → ∞. Thus, under
excess of loss reinsurance we have the same situation as under proportional
reinsurance, namely a minimum retention level which depends on the relative
values of θ and θ R, and a net of reinsurance loading factor which increases
from 0 to θ as the insurer moves from the minimum to the maximum retention
level.

Now let the net of reinsurance adjustment coefficient be denoted by R(M).
Then, adapting equation (9.5), we have

1 + (
1 + θ − (1 + θ R)e−M

)
R(M) = 1 − R(M)e−(1−R(M))M

1 − R(M)
,

an equation which must be solved numerically for R(M) for a given value
of M . Figure 9.5 shows R(M) when θ = θ R = 0.1. This figure has the same
characteristics as Fig. 9.2. The reason for this is that the net of reinsurance
premium loading is 0.1 for all values of M . In the case when M = 0, the insurer
cedes the entire risk to the reinsurer and limM→0+ R(M) = ∞. As M increases,
the insurer’s share of each individual claim increases and R(M) decreases to
a limiting value of 0.090 91 as M → ∞. Figure 9.6 shows three examples of
what happens when θ < θ R . Here θ = 0.1 and θ R takes the values 0.15, 0.25
and 0.35. For each of these values of θ R , there is an optimal value of M that
maximises R(M). As θ R increases, the optimal value of M increases and the
value of R(M) at the optimal M decreases. This is in line with the examples
on proportional reinsurance. As the cost of reinsurance increases, the insurer
must retain a greater part of the risk in order to maximise the net of reinsurance
adjustment coefficient.
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Figure 9.5 R(M) when θ = θ R = 0.1.
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9.4 Notes and references

The problems discussed in Section 9.2 are standard applications of utility
theory to actuarial problems. See, for example, Borch (1990). Examples of
papers discussing reinsurance and the adjustment coefficient are Waters (1983)
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and Centeno (1986). Table 9.2 is based on Table 1 of Dickson and Waters
(1996).

9.5 Exercises

1. In identity (9.2), find M when X ∼ γ (2, 0.01) and h(x) = x/2.
2. Aggregate claims from a risk have a compound Poisson distribution with

Poisson parameter 100, and individual claim amounts are exponentially
distributed with mean 100. The insurer of this risk decides to effect
proportional reinsurance, and the reinsurance premium is calculated
according to the expected value principle with a loading factor of θ R . Find
an expression for the proportion retained that maximises the insurer’s
expected utility of wealth with respect to the utility function
u(x) = − exp{−βx}, where 0 < β < 0.01.

3. Aggregate claims from a risk have a compound Poisson distribution with
Poisson parameter 100, and individual claim amounts are exponentially
distributed with mean 100. The insurer of this risk decides to effect excess
of loss reinsurance, and the reinsurance premium is calculated according to
the variance principle with parameter 0.5.
(a) Show that the reinsurance premium when the retention level is M is

P(M) = 101 × 104 × e−0.01M .

(b) Find the retention level that maximises the insurer’s expected utility of
wealth with respect to the utility function

u(x) = − exp{−0.005x}.

4. Aggregate claims in a year from a risk have a compound Poisson
distribution with parameters λ and F(x) = 1 − e−αx , x ≥ 0. The insurer of
this risk decides to effect excess of loss reinsurance with retention level M ,
and the reinsurance premium is calculated by the Esscher principle with
parameter h < α.
(a) Show that the reinsurance premium is

λαe−αM

(α − h)2 .

(b) Let M∗ be the retention level that maximises the insurer’s expected
utility of year-end wealth with respect to the utility function
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u(x) = − exp{−βx}, where 0 < β < α. Show that

M∗ = 1

β
log

(
α2

(α − h)2

)
.

5. Aggregate claims from a risk have a compound Poisson distribution with
Poisson parameter λ, and the individual claim amount distribution is
exponential with mean 1/β. The insurer of this risk effects proportional
reinsurance with proportion retained a. The premium for the risk and the
reinsurance premium are calculated with loading factors of θ and θ R

respectively, where θ < θ R . Show that

R(a) = β

a

θ − θ R(1 − a)

1 + θ − (1 + θ R)(1 − a)
.

for 1 − θ/θ R < a ≤ 1.
6. Aggregate claims from a risk have a compound Poisson distribution with

Poisson parameter λ, and the individual claim amount distribution is
γ (2, 0.02). The insurer calculates the premium for this risk with a loading
factor of 20%, and can effect proportional reinsurance. The insurer has a
choice between retaining 60% or 80% of each claim, and in each case the
reinsurance premium is calculated with a loading factor of 25%. Which
retention level should the insurer choose to maximise its net adjustment
coefficient?

7. Aggregate claims from a risk have a compound Poisson distribution with
Poisson parameter λ, and the individual claim amount distribution is
Pa(3, 200). The insurer calculates the premium for this risk with a loading
factor of 10%, and effects excess of loss reinsurance with retention level
M . The reinsurance premium is calculated with a loading factor of 15%.
(a) Find an expression for the insurer’s net of reinsurance loading factor in

terms of M.

(b) What is the minimum value of M such that the insurer’s net of
reinsurance loading factor is positive?

(c) Give the equation satisfied by the insurer’s net of reinsurance
adjustment coefficient.
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Solutions to exercises

Chapter 1

1. Apply the fact that
∑∞

x=1 Pr(X = x) = 1 gives∑∞
x=1 θ x/x = − log(1 − θ ) to

MX (t) =
∞∑

x=1

etx −1

log(1 − θ )

θ x

x
.

The first two moments can be found by differentiating MX (t), or writing
E[Xr ] = ∑∞

x=1 xr Pr(X = x), and noting that
∑∞

x=1 θ x = θ/(1 − θ ) and∑∞
x=1 xθ x = θ/(1 − θ )2.

2. The expression for E[Xn] follows from

∫ 1

0
xα−1(1 − x)β−1 dx = �(α)�(β)

�(α + β)

which follows from
∫ 1

0 f (x) dx = 1.
3. (a) This follows by integrating the density function.

(b) The first part follows as Pr(Y ≤ y) = Pr(X ≤ y1/γ ).
4. When X ∼ Pa(α, λ), the kth moment is

E[Xk] =
∫ ∞

0
xk αλα

(λ + x)α+1
dx

and by integrating the generalised Pareto density, we get

∫ ∞

0

λαxk−1

(λ + x)k+α
dx = �(α)�(k)

�(α + k)
.
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Then

E[X ] =
∫ ∞

0
x

αλα

(λ + x)α+1
dx = αλ

∫ ∞

0

xλα−1

(λ + x)2+(α−1)
dx

= αλ
�(α − 1)�(2)

�(α + 1)
= λ

α − 1
.

Similarly,

E[X2] =
∫ ∞

0
x2 αλα

(λ + x)α+1
dx = αλ2

∫ ∞

0

x2λα−2

(λ + x)3+(α−2)
dx

= αλ2 �(α − 2)�(3)

�(α + 1)
= 2λ2

(α − 1)(α − 2)

and

E[X 3] = αλ3 �(α − 3)�(4)

�(α + 1)
= 6λ3

(α − 1)(α − 2)(α − 3)
.

5. When X ∼ Pa(α, λ),

E[min(X, M)] =
∫ M

0

xαλα

(λ + x)α+1
dx + M

(
λ

λ + M

)α

and∫ M

0

xαλα

(λ + x)α+1
dx

=
∫ M

0

αλα

(λ + x)α
dx − λ

∫ M

0

αλα

(λ + x)α+1
dx

= αλ

α − 1

∫ M

0

(α − 1) λα−1

(λ + x)α
dx − λ

[
1 −

(
λ

λ + M

)α]

= αλ

α − 1

[
1 −

(
λ

λ + M

)α−1
]

− λ

[
1 −

(
λ

λ + M

)α]
.

6. The moment generating function is

MX (t) = 1

σ
√

2π

∫ ∞

−∞
exp{t x} exp

{−(x − µ)2

2σ 2

}
dx

and

t x − (x − µ)2

2σ 2
= µt + 1

2
σ 2t2 − 1

2σ 2

(
x − (µ + σ 2t)

)2
.

7. (a) Pr(X ≤ 30) = F(30) = 0.625.

(b) Pr(X = 40) = F(40) − F(40−) = 0.25.
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(c) As Pr(X = 20) = 0.5, and F ′(x) = 1/80 for 20 < x < 40,

E[X ] = 20 × 0.5 + 1

80

∫ 40

20
x dx + 40 × 0.25 = 27.5.

(d) V [X ] = 77.083 since

E[X2] = 202 × 0.5 + 1

80

∫ 40

20
x2 dx + 402 × 0.25 = 833.33.

8. As the mean and variance are 100 and 30 000 respectively,

exp
{
µ + 1

2σ 2
} = 100

and

exp{2µ + σ 2} (
exp{σ 2} − 1

) = 30 000,

giving µ = 3.9120 and σ 2 = 1.3863.
(a) From the solution to Example 1.4 with M = 250 and n = 1,

E[min(X, 250)] = exp
{
µ + 1

2σ 2
}
	

(
log M − µ − σ 2

σ

)

+ M

(
1 − 	

(
log M − µ

σ

))
= 100	(0.1895) + 250 (1 − 	(1.3670))

= 78.97.

(b) As X = min(X, 250) + max(0, X − 250),
E[max(0, X − 250)] = 21.03.

(c) To obtain the second moment, calculate as in part (a), but with n = 2.
The solution is 5591.59.

(d) E[X |X > 250] = E[X − 250|X > 250] + 250 and

E[X − 250|X > 250] = E[max(0, X − 250)]

Pr(X > 250)
= 245.02.

9. (a) Let Sn = ∑n
i=1 Xi . Then Sn ∼ b(mn, q) since

E
[
exp{t Sn}

] = E
[
exp{t X1}

]n = (
qet + 1 − q

)mn
.

(b) The same argument as in (a) gives Sn ∼ N (nµ, nσ 2).
10. Using the arguments in the previous question, the distribution of

S4 = ∑4
i=1 Xi is N B(4, 0.75). Then Pr(S4 = 0) = 0.3164,

Pr(S4 = 1) = 0.3164, Pr(S4 = 2) = 0.1978, Pr(S4 = 3) = 0.0989 and
Pr(S4 = 4) = 0.0433, giving Pr (S4 ≤ 4) = 0.9727.
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11. The result follows by defining random variables {Yi }n
i=1 where

Yi = Xi − m is distributed on 0, 1, 2, . . . Now apply formula (1.18) to∑n
i=1 Yi .

Chapter 2

1. We have u′(x) = 1 − x/β > 0, u ′′(x) = −1/β < 0 and r (x) = 1/(β − x)
which is clearly increasing in x .

2. (a) u′(x) = 2
3 x−1/3 > 0 and u ′′(x) = −2

9 x−4/3 < 0.
(b) The expected utility of resulting wealth if no insurance is effected is

1

200

∫ 200

0
(250 − x)2/3 dx = 27.728

compared with

1

200

[∫ 20

0
(165 − x)2/3 dx +

∫ 200

20
1452/3 dx

]
= 27.725

if insurance is effected, since the individual pays min(X, 20) under the
insurance policy. Hence, the individual will not purchase insurance
cover.

3. From equation (2.6), the minimum acceptable premium is 
 where


 = 1

0.002
log MX (0.002) = 1.1 × 106.

4. (a) E[u(AX1)] > E[u(AX2)] if and only if E[X1/2
1 ] > E[X1/2

2 ],
independent of A.

(b) E[X 1/2
i ] = exp{ 1

2µi + 1
8σ 2

i }. Thus, E[X1/2
2 ] > E[X1/2

1 ] when
σ 2 > 0.201.

(c) The condition E [AX1] = E [AX2] implies µ1 + 1
2σ 2

1 = µ2 + 1
2σ 2

2

and, under this condition, V [AX1] < V [AX2] implies σ 2
1 < σ 2

2. The
investor chooses Share 1 if

1
2µ1 + 1

8σ 2
1 > 1

2µ2 + 1
8σ 2

2

which gives σ 2
1 < σ 2

2. The investor is risk averse, so prefers Share 1
which has the same expected accumulation as Share 2 but the lower
variance of accumulation.

5. Again using equation (2.6), the minimum acceptable premium is 
 where


 = 1

0.005
log MY (0.005)
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and Y = max(0, X − 20). As Pr(Y = 0) = 1 − 0.2e−0.2 and Y has density
function 0.01e−0.01(x+20) for x > 0,

MY (0.005) = Pr(Y = 0) + 0.2
∫ ∞

0
e0.005x 0.01e−0.01(x+20) dx = 1.16375

giving 
 = 30.33.

Chapter 3

1. 
X1+X2 = 
X1 + 
X2 + 2αCov(X1, X2), so the principle is sub-additive
if Cov(X1, X2) ≤ 0.

2. (a) 
X =
√

E[X2] = √
1.5 = 1.225.

(b) Let Y = X + 1, where X is as in (a). Then E[Y 2] = 4.5 giving

Y = 2.121 �= 
X + 1.

3. The equation u(300) = E [u(300 + 
X − X )] reduces to


2
X − (400 + 2E [X ]) 
X + E

[
X2

] + 400E [X ] = 0.

This gives 
X1 = 101.0025, 
X2 = 102.5407 and 
X1+X2 = 203.5460, so
that 
X1+X2 �= 
X1 + 
X2 .

4. MX (t + h)/MX (h) = exp{λeh(et − 1)}, which is the moment generating
function of a P(λeh) random variable.

5. In the notation of Section 3.3.6, X̃ ∼ γ (2, 0.01 − h). As 
X = E[X̃ ],
h = 0.002.

6. As Pr(X ≤ x) = (x − 5)/10 for 5 ≤ x ≤ 15,


X =
∫ 5

0
dx +

∫ 15

5

(
15 − x

10

)5/6

dx = 10.4545.

7. The answer follows by differentiating and the fact that ρ > 1.
8. (a) Apply l’Hôpital’s rule to 
X (β) = β−1 log E

[
exp{β X}].

(b) Show that

(
β2
′

X (β)
)′ = β

[
M ′′

X (β)

MX (β)
−

(
M ′

X (β)

MX (β)

)2
]

and use Esscher transforms to deduce that the term in square brackets
on the right-hand side is a variance and hence positive.

Chapter 4

1. E[S] = 120 and V [S] = 540.
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2. The premium is 100 (MX (β) − 1) /β where X ∼ γ (2, 0.001) and
β = 0.0001, giving 234 568.

3. The Esscher transform of the compound Poisson distribution is also a
compound Poisson distribution with Poisson parameter 200MX (h) and
moment generating function MX (t + h)/MX (h) for individual claims,
where h = 0.001. Hence the individual claim amount distribution is
exponential with parameter 0.01 − 0.001 = 0.009. The premium is the
mean of this compound Poisson distribution, that is

200
0.01

0.01 − 0.001

1

0.009
= 24 691.

4. The distribution of S1 + S2 is compound Poisson with Poisson parameter
50 and individual claims are distributed as Z where

Pr(Z = 10) = 0.1 Pr(Z = 30) = 0.34
Pr(Z = 20) = 0.38 Pr(Z = 40) = 0.18

5. When N ∼ b(n, q), NR ∼ b(n, qπ M ) since
PNR (r ) = (qπ Mr + 1 − qπ M )n .

6. (a) This follows from Example 4.6 with M = 400 and π M = 0.125.
(b) This follows using arguments in Example 4.7.
(c) Cov(SA, SB) = 0.21V [S] where S has a compound negative binomial

distribution whose components are given in (a) and (b). Hence
Cov(SA, SB) = 1.7325 × 106.

7. (a) We have

E [SR] = 10
∫ ∞

M
(x − M)0.01e−0.01x dx = 1000e−0.01M

and

V [SR] = 10
∫ ∞

M
(x − M)20.01 e−0.01x dx = 2 × 105 e−0.01M .

(What is the alternative approach?)
(b) E[g(M)] = 100 − 200e−0.01M , which is positive for M > 69.31.

(c) For each value of M , the variance of net profit is just the variance of
net aggregate claims, so

V [g(M)] = 10
∫ M

0
x20.01e−0.01x dx + 10M2e−0.01M

so

d

d M
V [g(M)] = 20Me−0.01M > 0.
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8. Start from the definition of E [min(Y, M)]:

E [min(Y, M)] =
M∑

j=0

jh j + M
∞∑

j=M+1

h j =
M−1∑
j=0

[1 − H ( j)]

=
∫ M

0
[1 − F(x)] dx =

∫ M

0

∫ ∞

x
f (y) dy dx .

Change the order of integration to obtain the result.
9. With a = −1.5, b = 16.5 and Pr(S = 0) = 0.410, the Panjer recursion

formula gives the following values:

x 1 2 3 4 5

Pr(S = x) 0.0006 0.0022 0.0061 0.0134 0.0252

and hence Pr(S ≤ 5) = 0.0477. (Answers are rounded.)
10. Individual claims for the reinsurer have the same distribution as claims for

the insurer. The distribution of the number of claims for the reinsurer is
N B(10, 0.7094). Using the Panjer recursion formula the respective
probabilities of aggregate claim amounts of 0, 1 and 2 for the reinsurer are
0.0323, 0.0188 and 0.0210, so the solution is 0.0721.

11. (a) Note that p1 = 1 − α and

PN (r ) = r p1 +
∞∑

r=2

rnα pn−1 = r (1 − α) + αr PN (r ).

(b) This follows by the techniques in Section 4.6.1
(c) This also follows by the techniques in Section 4.6.1, with

g0 = PN ( f0) =
∞∑

n=1

pn f n
0

and

gx = 1

1 − α f0

(
(1 − α) fx + α

x∑
j=1

f j gx− j

)
.

(This is just a special case of equation (4.25).)
(d) The solution is

E
[
Sr

] = E
[
Xr

] + α

1 − α

r−1∑
j=0

(
r

j

)
E

[
S j

]
E

[
Xr− j

]
.
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12. (a) This follows from

P ′
N (r ) =

∞∑
n=1

nrn−1
k∑

i=1

(
ai + bi

n

)
pn−i .

(b) P ′
Yi

(r ) = i PX1 (r )i−1 P ′
X1

(r ).
(c) This follows by standard arguments.
(d) This also follows by standard arguments.
(e) The issue with using the formula is that it involves convolutions,

which must be calculated before applying the formula.
13. Moments of the individual claim amount distribution are m1 = 70,

m2 = 11 000 and m3 = 2.85 × 106. Thus E [S] = 3500 and
V [S] = 550 000.
(a) The solution is 0.911.
(b) The translated gamma distribution’s parameters are α = 32.7732,

β = 7.7193 × 10−3 and k = −745.614, and so the solution is 0.905.
14. Use E[S] = 107q and V [S] = 1010q(2 − q) where S denotes aggregate

claims. Setting Pr(106 > S) = 0.95 gives q = 0.0931.

Chapter 5

1. (a) The mean is 1.5 and the variance is 2.2955.
(b) The total claim amount is 2 if one of four events occurs: 2 deaths from

the first or second group, 1 death from the third group, or 1 death from
each of the first and second group. Adding together the probabilities of
these events gives 0.2148.

2. (a) The mean is 26 325q and the variance is 1 377 000q − 1 338 525q2.
(b) (i) The Poisson parameter is 513.75q and the claim amounts are 45

with probability 0.583 94, and 60 with probability 0.416 06.
(ii) The mean is 26 325q and the variance is 1 377 000q.

(iii) In each category we are replacing the binomial distribution for the
number of deaths by a Poisson distribution which has the same
mean but a greater variance.

3. (a) From

A(r ) =
n∏

i=1

(pi + qi B(r ))

we get

log A(r ) =
n∑

i=1

log(pi + qi B(r ))

and the result is obtained by differentiating this identity.
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(b) Multiply the identity in part (a) by r to obtain

∞∑
x=1

xr x gx =
( ∞∑

x=0

r x gx

) (
n∑

i=1

∞∑
k=1

(−1)k−1

k

(
qi

pi

)k ∞∑
x=1

xr x hk∗
x

)
.

The solution for gx is obtained by equating coefficients of r x . Trivially,
g0 = ∏n

i=1 pi .
(c) This follows by writing pi = exp {− log(1 + qi/pi )}.
(d) Let � = ∑n

i=1 qi/pi . Then g(1)
0 = exp{−�}. Further, for

x = 1, 2, 3, . . .,

φ(1)
x =

n∑
i=1

qi

pi
hx = �hx

and hence

g(1)
x = �

x

x∑
i=1

ihi g
(1)
x−i

which is the Panjer recursion formula for a compound Poisson
probability function.

4. (a) This follows as

PS(r ) =
I∏

i=1

J∏
j=1

(
p j + q jr

i
)ni j = g0

I∏
i=1

J∏
j=1

(
1 + q j

p j
r i

)ni j

.

(b) From the definitions

Q2(r ) =
I∑

i=1

J∑
j=1

ni j
q jr i

p j
− 1

2

I∑
i=1

J∑
j=1

ni j

(
q jr i

p j

)2

.

Hence, if x is even,

b(2)
x =

J∑
j=1

nx j
q j

p j
− 1

2

J∑
j=1

nx/2, j

(
q j

p j

)2

which is non-zero if x ≤ 2I . If x is odd

b(2)
x =

J∑
j=1

nx j
q j

p j

and this is non-zero provided that x ≤ I .

Chapter 6

1. (a) ψd (0) = E[Z1] = 3q. Then use H (0) = H (1) = H (2) = p, and
H (k) = 1 for k = 3, 4, 5, . . . in equation (6.7), to get ψd (1) = 2q/p
and ψd (2) = 2(q/p)2 + q/p.
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(b) Recursive calculation (e.g. using a spreadsheet) gives
ψd (10) = 0.010 03 and ψd (11) = 0.006 41.

2. The equation satisfied by Rd is

p + q(1 − α) exp{Rd }
1 − α exp{Rd} = exp{Rd }.

3. (a) This follows from the definition of Gd (0, y).
(b) This follows by the same arguments that give equation (6.5), noting

that the maximum amount of the first drop below the initial level u
must be u + y − 1 if the deficit is to be less than y.

(c) This follows using the arguments in Example 6.2, and noting from (a)
that Gd (0, y) = q(1 − αy)/(1 − α).

(d) This follows by noting that

Pr(deficit = y|ruin from initial surplus 0) = gd (y)/ψd (0).

4. Applying formulae (6.11) and (6.12) we get ψd (0, 3) = 0.384.

Chapter 7

1. (a) 104 and 3 × 106.
(b) 2 × 104 and 6 × 106.
(c) 104 and 3 × 106.

2. The adjustment coefficient R satisfies

λ + 130λR = λ

(
0.02

0.02 − R

)2

,

so R = 0.0032.
3. Replacing MX (R) by 1 + m1 R + 1

2 m2 R2 + 1
6 m3 R3 results in

R2 + 5

3
R − 5

42
= 0

and hence R = 0.0686. (From Example 7.3, the actual value is 0.0685.)
4. From equation (3.2) the premium is


S(1) = β−1 log E
[
exp{βS(1)}]

= β−1λ (MX (β) − 1) .

Rearranging this we get λ + 
S(1)β = λMX (β), so β = R.
5. Let λ = 100 and c = 125.

(a) We have

ψ1(u) =
∫ ∞

0
λe−λt e−(u+ct) dt = λe−u

λ + c
.
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(b) We have

ψ 2(u) = ψ1(u) +
∫ ∞

0
λe−λt

∫ u+ct

0
ψ1(u + ct − x)e−x dx dt

which gives

ψ2(u) = ψ1(u)

(
101

81
+ 4

9
u

)
.

6. (a) R = 0.0719.
(b) φ(u) = 1 − 0.8984 exp{−0.0719u} − 0.0107 exp{−1.6857u}.
(c) The parameters in De Vylder’s approximation are α̃ = 5/7,

λ̃ = 125/196 and c̃ = 139/140. The numerical values are:

u Exact Approximate

0 0.9091 0.8993
10 0.4377 0.4380
20 0.2132 0.2133
30 0.1039 0.1039
40 0.0506 0.0506
50 0.0247 0.0246

7. (a) Using R = α − λ/c and E[XeR X ] = α/(α − R)2 we get C = λ/(αc).
(b) Here m1 = 1, c/λ = 1.1 and E

[
XeR X

] = 1.2113. The
approximation to ψ(0) is 0.8984, and to four decimal places the
approximations are the same as the exact values for other values of u
in the above table.

8. (a) As k(x) = (1 − F(x))/m1,

E[Lr
1] = 1

m1

∫ ∞

0
xr

∫ ∞

x
f (y) dy dx .

Change the order of integration to obtain the result.
(b) Use E[L] = E[N ]E[L1] and V [L] = E[N ]V [L1] + V [N ]E[L1]2

where N has a geometric distribution with mean 1/θ to obtain

E[L] = m2

2θm1
and E[L2] = m3

3θm1
+ m2

2

2θ2m2
1

.

9. (a) The rationale is that the mixed distribution that approximates φ and
the distribution φ each have the same mean.

(b) R = 0.0315, S = 1.0269, C = 0.9448 and A = 0.0076, so the
solution is 0.5032.
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10. (a) Set ψ(0)α/β = E[L] and ψ(0)α(α + 1)/β2 = E
[
L2

]
with

E[L] = λ

µ(cµ − λ)
and E[L2] = 2cλ

µ(cµ − λ)2

to get α = 1 and β = µ − λ/c.
(b) E[L] = 12.5 and E[L2] = 347.5 giving α = 275/281 and

β = 20/281. The approximate values are shown below with exact
values (from question 6).

u Exact Approximate

0 0.9091 0.9091
10 0.4377 0.4368
20 0.2132 0.2125
30 0.1039 0.1036
40 0.0506 0.0506
50 0.0247 0.0248

11. Insert K n∗(u) = 1 − ∑n−1
j=0 e−αu (αu) j

j! in equation (7.19), then change the
order of summation.

12. (a) L1 ∼ Pa(3, 3).
(b) Approximations are shown below for the same values of κ as in

Table 7.2.

Lower Bounds for ψ(u) Upper Bounds for ψ(u)

u κ = 20 κ = 50 κ = 100 κ = 20 κ = 50 κ = 100

10 0.470 37 0.473 26 0.474 23 0.480 01 0.477 12 0.476 16
20 0.261 40 0.264 23 0.265 18 0.270 90 0.268 04 0.267 08
30 0.147 58 0.149 82 0.150 58 0.155 14 0.152 85 0.152 09
40 0.084 15 0.085 78 0.086 32 0.089 66 0.087 98 0.087 42
50 0.048 38 0.049 50 0.049 88 0.052 20 0.051 03 0.050 64
60 0.028 03 0.028 78 0.029 04 0.030 60 0.029 81 0.029 55

Average of Bounds

u κ = 20 κ = 50 κ = 100

10 0.475 19 0.475 19 0.475 19
20 0.266 15 0.266 13 0.266 13
30 0.151 36 0.151 34 0.151 33
40 0.086 91 0.086 88 0.086 87
50 0.050 29 0.050 26 0.050 26
60 0.029 32 0.029 30 0.029 29



Solutions to exercises 223

Chapter 8

1. Note that when u = b, the surplus remains at b until the first claim occurs.
Thus

ξ r (b, b) =
∫ ∞

0
λe−λt

∫ b

0
f (x)ξ r (b − x, b) dx dt +

∫ ∞

0
λe−λt (1 − F(b)) dt.

2. As ruin can occur with or without the surplus attaining b, the solution is
ξ (u, b) + χ (u, b)ψ(b) where ξ and χ are calculated with θ = 20% and ψ

is calculated with θ = 10%. The numerical solution is 0.2597.
3. Conditioning on the time and the amount of the first claim we obtain

G(u, y) =
∫ ∞

0
λe−λt

∫ u+ct

0
G(u + ct − x, y) f (x) dx dt

+
∫ ∞

0
λe−λt

∫ u+ct+y

u+y
f (x) dx dt.

Substitute s = u + ct , then differentiate.
4. We have

g(u, y)

ψ(u)
= (1.1589 + 1.0893y)e−R1u−2y − (0.3256 − 0.5774y)e−R2u−2y

ψ(u)

where R1 = 0.2268 and R2 = 2.9399, so

g(u, y)

ψ(u)
= 1.1589e−R1u − 0.3256e−R2u

2ψ(u)
2e−2y

+1.0893e−R1u + 0.5774e−R2u

4ψ(u)
4ye−2y

= w1(u)2e−2y + w2(u)4ye−2y .

Values are

u 0 1 2 3 4 5

w1(u) 0.500 0.669 0.679 0.680 0.680 0.680
w2(u) 0.500 0.331 0.321 0.320 0.320 0.320

We conclude that the conditional distribution of the deficit at ruin varies
little with initial surplus.

5. If ruin occurs with a deficit of y, then we require that the surplus attains 0
without falling below y, and the required probability is∫ ∞

0

g(u, y)

ψ(u)
χ (0, y) dy =

∞∑
j=0

(
λ

αc

) j R

α + R j

where R = α − λ/c.
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6. Equation (8.24) gives

R2
δ −

(
α − λ + δ

c

)
Rδ − αδ

c
= 0,

and differentiation of this equation leads to

R′
δ = α − Rδ

2cRδ − cα + λ + δ
.

Further,

R′′
δ = −2c(R′

δ)2 − 2R′
δ

2cRδ − cα + λ + δ
.

To obtain E
[
T 2

u,c

]
, differentiate ϕ(u, δ) = (1 − Rδ/α) exp{−Rδu} twice

with respect to δ, then set δ = 0 and finally divide by ψ(u).
7. (a) This can be seen by plotting λ + δ − cs and λ f ∗(s) as functions of s

for s > 0, and then s = 0.
(b) This follows since f ∗(s) = α/(α + s).

8. (a) This follows by standard results for Laplace transforms.
(b) As ρδ is a zero of the numerator (this follows from the previous

exercise), it is also a zero of the denominator giving

ϕ(0, δ) = λ
1 − f ∗(ρδ)

cρδ

= λm1

c
k∗(ρδ)

where the second equality follows by taking the Laplace transform of
equation (8.1).

(c) We have

E
[
T0,c

] = − ∂

∂δ

ϕ(0, δ)

ψ(0)

∣∣∣∣
δ=0

= − d

dδ
k∗(ρδ)

∣∣∣∣
δ=0

= ρ ′
0

m2

2m1

where ρ ′
0 = (d/dδ)ρδ|δ=0. Replacing s by ρδ in equation (8.39) and

differentiating leads to ρ ′
0 = 1/(c − λm1).

9. (a) The distribution of the time to the first claim is exponential with mean
1/λ, and on any subsequent occasion that the surplus attains the
barrier, the distribution of the time to the next claim is also exponential
with mean 1/λ. Hence the distribution of the amount of dividends in
any dividend stream is exponential with mean c/λ.

(b) There is a further dividend stream if the first claim is of amount x < b
and the surplus subsequently attains b from level b − x without going
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below 0. The probability of this is

p(b) =
∫ ∞

0
λe−λt

∫ b

0
f (x)χ (b − x, b) dx dt

=
∫ b

0
f (x)χ (b − x, b) dx .

Should the surplus process return to level b, the probability of a further
dividend stream is also p(b).

(c) Let � denote the total amount of dividends. Then
M�(t) = MN

[
log MD(t)

]
where N is distributed as in part (b) and D

is exponentially distributed with mean c/λ. As
MN (t) = (1 − p(b))et/(1 − p(b)et ),

M�(t) = (1 − p(b)) λ

(1 − p(b)) λ − ct
.

(d) The weight attaching to the degenerate distribution is 1 − χ (u, b),
which is the probability of no dividend payments.

Chapter 9

1. Solve 200 (1 − exp{−0.01M}(1 + 0.005M)) = 100 numerically giving
M = 114.62.

2. Finding the proportion retained a that maximises expected utility is
equivalent to finding a that minimises

h(a) = β(1 + θ R)(1 − a)104 + 100aβ

0.01 − aβ

giving a = (1/100β)
(
1 − (1 + θ R)−1/2

)
provided this is less than 1.

3. (a) This follows as aggregate claims for the reinsurer have a compound
Poisson distribution with Poisson parameter 100e−0.01M and claim
amounts are exponentially distributed with mean 100.

(b) Choosing M to maximise expected utility is the same as choosing M to
minimise h(M) where

h(M) = 5050e−0.01M + 100
(
1 − e−0.005M

)
and the solution is M = 923.02.

4. (a) This follows by noting that the Esscher transform of a compound
Poisson distribution is also a compound Poisson distribution.
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(b) Choosing M to maximise expected utility is the same as choosing M to
minimise h(M) where

h(M) = αe−αM

(α − h)2 + 1 − e−(α−β)M

α − β
.

5. The solution follows from

1 + ((1 + θ ) − (1 + θ R)(1 − a)) R(a)/β = β

β − a R(a)
.

6. The equation defining R(a) is

1 + (125a − 5)R(a) =
(

2

2 − 100a R(a)

)2

giving R(0.6) = 3.23 × 10−3, R(0.8) = 2.68 × 10−3 and
R(1) = 2.27 × 10−3. The solution is therefore 60%.

7. (a) The premium income is 110λ, the reinsurance premium is

115λ

(
200

200 + M

)2

and the expected aggregate claim amount, net of reinsurance, for the
insurer is

100λ

(
1 −

(
200

200 + M

)2
)

,

leading to

θ N = 10 − 15(200/(200 + M))2

100
(
1 − (200/(200 + M))2

) .

(b) The loading θ N > 0 when M > 44.95.
(c) The net adjustment coefficient R(M) satisfies

1 +
(

110 − 115

(
200

200 + M

)2
)

R(M)

=
∫ M

0
eR(M)x 3 × 2003

(200 + x)4 dx
+ eR(M)M

(
200

200 + M

)3

.
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